Potential new directions in research on stainless steel structures

Stainless Steel in Structures – 5th International Experts Seminar

Kim J.R. Rasmussen

Materials

Analysis Design provisions Applications

Materials

Alloys

- Duplex grades
- Increasingly recognised and accepted structurally
 - Strength
 - Fatigue
 - Corrosion
- High/ultra-high strength stainless steel alloys for structural applications

Added manufacturing

- High value add
- Complicated geometries
- Optimisation
- Composite solutions

Materials

Extreme events

- Seismic China and New Zealand
- Blast ductility and strain hardening
- <u>Low</u>/high temperature properties

Biomedical?

- Joints
- Stents

Materials Analysis Design provisions Applications

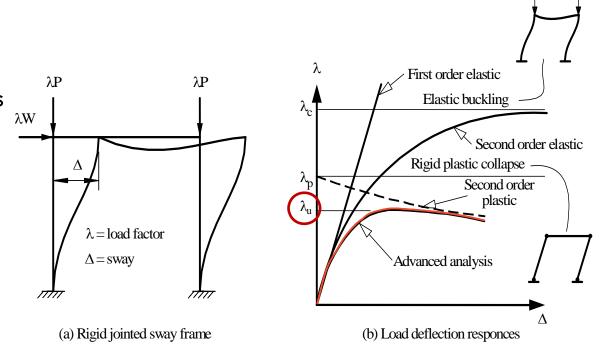
Analysis

Direct Design Method (DDM)

- Design stainless steel structures by advanced (GMNIA) analysis

D

$$\sum \gamma_i \mathbf{Q}_{ni} \qquad \qquad \frac{\kappa_n}{\gamma_{Ms}} \ge \sum \gamma_i \mathbf{Q}_{ni}$$


- Design check:
$$\phi_s \lambda_u \ge 1 \rightarrow \lambda_u \ge 1/\phi_s$$
 or $\lambda_u/\gamma_{Ms} \ge 1 \rightarrow \lambda_u \ge \gamma_{Ms}$

- What is
$$\phi_s$$
, or γ_{Ms} ?

Research questions:

 $\phi_{s}R_{n} \geq$

- Categorise typical stainless steel structural systems
- Determine ϕ_s / γ_{Ms} by system reliability analysis
- Define nominal model
- Include semi-rigid joints

The University of Sydney

Analysis

Connections – FE analysis

- Fracture of stainless steel alloys
- Constitutive models
- Implementation of constitutive models in FE software like Abaqus

Elflah, Theofanous & Dirar Stainless Steel in Structures London 2017

Component Method

- Inelastic component model
- Strain hardening
- Ductility

Materials Analysis **Design provisions** Applications

Design provisions

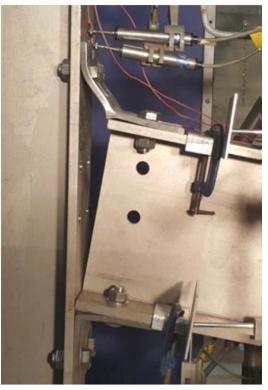
Cross-sections

- Built-up sections
- Sections with holes
- Open sections:
 - Web crippling using DSM

Members

- Open sections:
 - Beams
 - Beam-columns
 - Shear
- Welded sections:
 - Identify appropriate strength curves for columns and beams as per level of residual stress and strength grade

Design provisions


Members con't

- Concrete-filled stainless steel tubes:
 - High strength concretes
 - Seismic performance

Connections

- Hot-rolled and cold-formed steels.
 Consistent framework for component limit states for:
 - Bolted connections
 - Welded connections
- Design methods and M-theta relations for complete connections, e.g.
 - Bolted moment end-plate connections
 - Top and seat angle connections
 - Web cleat angle connections
 - Tubular connections

Elflah, Theofanous & Dirar Stainless Steel in Structures London 2017

Materials Analysis Design provisions Applications

Applications

Complete systems – design guidelines

- Tubular truss and framing systems, including connections
- Portal frames
- Roofing and façade systems, (purlin and sheeting systems)
- Bridges

Sub-structural applications

- Large bridges
- Off-shore building components

Dismantlement and re-use

Thank-you

Thank you

Nancy Baddoo and SCI

- 1998
- 2003
- 2007
- 2012
- 2017

Imperial College

Sponsors:

- IMOA
- Nickel Institute
- ISSF
- Montanstahl
- Stala Tube