

Plastic design of stainless steel continuous beams

Dr Michaela Gkantou, Georgios Kokosis*, Dr Marios Theofanous and Dr Samir Dirar School of Engineering, Department of Civil Engineering, University of Birmingham, UK

Presentation outline

- Introduction
- Methodology
- Experimental studies
- Numerical modelling
- Discussion of results
- Conclusions & future research

Stainless steel structures

Chrysler building, New York

(source: https://vi.wikipedia.org/wiki/Art_Deco)

Cloud Gate in Chicago, USA

(source: https://en.wikipedia.org/wiki/Cloud_Gate)

Introduction

Methodology

Experimental studies

Numerical modelling

Discussion of results

Conclusions

Stainless steel - Benefits

- High strength, stiffness and ductility
- Weldability
- Better retention of strength and stiffness at elevated temperatures
- Excellent corrosion resistance
- High residual value-recyclability-sustainability
- High quality surface finish-aesthetic appeal

Arrayago, I., Real, E., Gardner, L. (2015). Description of stress-strain curves for stainless steel alloys. Materials & Design, 87, 540-552.

Knowledge Gap

Current Status (focus on plastic design):

- Due to lack of available experimental data, plastic design of stainless steel (SS) indeterminate structures is currently not permitted by Eurocode 3: Part 1.4.
- The **high initial material cost** warrants the development of novel design procedures, which fully utilise its merits.

<u>Research aim</u>: Investigate the structural performance of **SS continuous beams** and provide design recommendations.

Introduction	Methodology	Experimental studies	Numerical modelling	Discussion of results	Conclusions

Methodology

Tensile coupon tests

El-4

Flat couj	pon	Corner coupor	n	100×50×3 web	100×50×5 flange	100×50×5 corner
Introduction	Methodology	Experimental studies	Numerical modelling	Discuss of resu	sion 1lts	Conclusions

Tensile coupon tests

Simply supported tests

Simply supported tests

3-P bending tests

4-P bending tests

Simply supported test results

Continuous beam tests

Continuous beam tests

IntroductionMethodologyExperimental
studiesNumerical
modellingDiscussion
of resultsConclusions

Continuous beam results

FE Modelling

- Finite element models were developed using the **reduced integration 4-noded shell** elements
- Precise geometric dimensions were incorporated on the FE model
- To increase computational efficiency, the **symmetry** in boundary conditions, loading and failure mode was exploited only in half of the cross-section
- The material properties conducted by the tensile coupon test were utilized in the FE models
- The **corner properties** are extended to a distance equal twice the thickness of the section beyond the curved corner regions
- Distributing coupling was used at the loading points and at the mid support
- The amplitude of **local imperfection** was considered as a fixed fraction of the component thickness **t**.

Introduction

Experimental studies

Numerical modelling

Discussion of results

Conclusions

Validation

Typical experimental and numerical failure modes

Simply supported beams (RHS $100 \times 50 \times 5 - 4$ -point bending)

Continuous beams (RHS $100 \times 50 \times 3$ -D)

Introduction

Methodology

Experimental studies

Numerical modelling Discussion of results

Conclusions

Parametric Studies

Assessment of cross-section slenderness limits

Design methods for continuous beams

1. EC3 without moment redistribution:

- The bending moment of the most heavily stressed cross-section to reach its respective moment resistance (M_{pl} for Class 1 and 2 sections, M_{el} for Class 3 sections and, M_{eff} for Class 4 sections)
- The current provisions account neither for strain-hardening nor for moment redistribution.

2. EC3 with moment redistribution:

Plastically designed, assuming rigid-plastic material response

Introduction	Mathadalagu	Experimental	Numerical	Discussion of	Conclusions
muoduction	Wethodology	studies	modelling	results	Conclusions

Design methods for continuous beams

3. CSM without moment redistribution:

- treatment of local buckling of stainless steel cross-sections, rationally accounting for the significant strain-hardening exhibited by stocky sections
- based on a base curve, which relates the non-dimensional slenderness λ_{cs} of a cross section to its deformation capacity ε_{csm}.

$$\left(\frac{M \ csm}{M \ pl}\right)_{i} = 1 + \frac{E \ sh \ W \ el}{E \ W \ pl} \left(\frac{\varepsilon \ csm}{\varepsilon \ y} - 1\right) - \left(1 - \frac{W \ el}{W \ pl}\right) \left(\frac{\varepsilon \ csm}{\varepsilon \ y}\right)^{-2}$$

*Afshan S., Gardner L., The continuous strength method for structural stainless steel design, Thin-Walled Structures, Vol. 68, pp. 42-49, 2013

Design methods for continuous beams

4. CSM with moment redistribution:

Results of parametric studies

Results of parametric studies

				EC3 no	EC3 with	CSM no	CSM with	-				EC3 no	EC3 with	CSM no	CSM with
	Specimen	Grade	Class	redistribution	redistribution	redistribution	redistribution		Specimen	Grade	Class	redistribution	redistribution	redistribution	redistribution
					Fpre	_d /F _u							Fpre	_d /F _u	
	$100\times 50\times 2$	1.4301/1.4307	1	0.90	0.97	0.86	0.95		$100\times 50\times 2$	1.4301/1.4307	1	0.90	0.93	0.87	0.92
	$100\times50\times3$	1.4301/1.4307	1	0.80	0.86	0.91	1.02		$100\times 50\times 3$	1.4301/1.4307	1	0.82	0.85	0.94	1.01
	$100\times 50\times 4$	1.4301/1.4307	1	0.74	0.80	0.91	1.05		$100\times 50\times 4$	1.4301/1.4307	1	0.76	0.79	0.94	1.04
	$100\times50\times5$	1.4301/1.4307	1	0.68	0.73	0.84	0.96		$100\times 50\times 5$	1.4301/1.4307	1	0.70	0.72	0.86	0.95
	$100\times 50\times 2$	1.4462	2	0.90	0.90	0.81	0.91		$100\times 50\times 2$	1.4462	2	0.92	0.92	0.82	0.88
	$100\times 50\times 3$	1.4462	1	0.78	0.85	0.86	0.97		$100\times50\times3$	1.4462	1	0.81	0.83	0.89	0.95
	$100\times 50\times 4$	1.4462	1	0.71	0.77	0.85	0.97		$100\times 50\times 4$	1.4462	1	0.73	0.76	0.87	0.95
	$100\times 50\times 5$	1.4462	1	0.65	0.70	0.77	0.87		$100\times 50\times 5$	1.4462	1	0.66	0.68	0.79	0.86
	$50 \times 50 \times 2$	1.4301/1.4307	1	0.89	0.96	0.86	0.95		$50\times50\times2$	1.4301/1.4307	1	0.91	0.93	0.88	0.93
	$50 \times 50 \times 3$	1.4301/1.4307	1	0.77	0.83	0.88	0.99		$50\times50\times3$	1.4301/1.4307	1	0.80	0.83	0.92	0.99
	$50 \times 50 \times 4$	1.4301/1.4307	1	0.73	0.79	0.91	1.05		$50\times 50\times 4$	1.4301/1.4307	1	0.77	0.79	0.96	1.06
LOI	$50 \times 50 \times 5$	1.4301/1.4307	1	0.70	0.75	0.86	0.99	1.02	$50\times 50\times 5$	1.4301/1.4307	1	0.73	0.75	0.91	1.00
LCI	$50 \times 50 \times 2$	1.4462	2	0.90	0.90	0.83	0.92	LC2	$50 \times 50 \times 2$	1.4462	2	0.90	0.90	0.82	0.88
	$50 \times 50 \times 3$	1.4462	1	0.75	0.81	0.83	0.93		$50\times50\times3$	1.4462	1	0.77	0.80	0.86	0.92
	$50 \times 50 \times 4$	1.4462	1	0.73	0.79	0.87	1.00		$50\times 50\times 4$	1.4462	1	0.77	0.79	0.92	1.01
	$50 \times 50 \times 5$	1.4462	1	0.70	0.76	0.84	0.96		$50\times 50\times 5$	1.4462	1	0.75	0.77	0.89	0.97
	$122\times 50\times 2$	1.4301/1.4307	3	0.75	0.75	0.84	0.94		$122\times 50\times 2$	1.4301/1.4307	3	0.76	0.76	0.85	0.91
	$122 \times 50 \times 3$	1.4301/1.4307	1	0.83	0.89	0.90	1.00		$122 \times 50 \times 3$	1.4301/1.4307	1	0.85	0.88	0.93	0.99
	$122\times 50\times 4$	1.4301/1.4307	1	0.77	0.83	0.95	1.09		$122\times 50\times 4$	1.4301/1.4307	1	0.79	0.82	0.98	1.08
	$122 \times 50 \times 5$	1.4301/1.4307	1	0.71	0.76	0.87	1.01		$122 \times 50 \times 5$	1.4301/1.4307	1	0.74	0.76	0.90	1.00
	$122\times 50\times 2$	1.4462	4	0.73	0.73	N/A	N/A		$122\times 50\times 2$	1.4462	4	0.77	0.77	N/A	N/A
	$122\times 50\times 3$	1.4462	1	0.82	0.89	0.87	0.96		$122\times 50\times 3$	1.4462	1	0.85	0.87	0.89	0.95
	$122\times 50\times 4$	1.4462	1	0.75	0.81	0.89	1.02		$122\times 50\times 4$	1.4462	1	0.77	0.80	0.92	1.00
	$122\times 50\times 5$	1.4462	1	0.68	0.73	0.80	0.92		$122\times 50\times 5$	1.4462	1	0.70	0.73	0.84	0.91
	Mean	A 11		0.77	0.81	0.86	0.98		Mean	A 11		0.79	0.81	0.89	0.96
	COV	All		0.10	0.09	0.05	0.05		COV	All		0.09	0.08	0.05	0.06
									ъ т ·	1		• •	1		

Introduction

Methodology

Experimental studies

Numerical modelling

Discussion of results

Conclusions

Conclusions

<u>1. EC3 without moment redistribution:</u>

The most conservative design predictions for both LC1 and LC2

<u>2. EC3 with moment redistribution:</u>

Improved design predictions both in terms of accuracy and consistency

<u>3. CSM without moment redistribution:</u>

The effect of strain-hardening is considered; improved design predictions

4. CSM with moment redistribution:

Both the effect of strain-hardening and moment redistribution have to be taken into account; accurate predictions of the observed response

Introduction Methodology	Experimental studies	Numerical modelling	Discussion of results	Conclusions	
--------------------------	----------------------	------------------------	--------------------------	-------------	--

Summary - Future work

- The **CSM with moment redistribution** has been found to results in more accurate design estimations.
- Further research is underway to extend the method to the design of pinned based and fixed based **stainless steel portal frames.**

Acknowledgements

The financial support received from the Engineering and Physical Sciences Research Council (EPSRC) under grant agreement EP/P006787/1 is gratefully acknowledged.

Introduction	Methodology	Experimental studies	Numerical modelling	Discussion of results	Conclusions
--------------	-------------	----------------------	---------------------	--------------------------	-------------

Thank you for your kind attention!