5th International Experts Seminar: Stainless Steel in Structures

Study on the static performance of stainless steel tubular T-joints

PH.D student Jiachang WANG, Prof. Ganping SHU

School of Civil Engineering, Southeast University

Overview

- Introduction
- ✓ Experiments on T-joints
- ✓ FE simulations on T-joints
- ✓ Parametric analysis on T-joints
- ✓ Ultimate capacity formula of T-joints
- ✓ Conclusions

01 Introduction

✓ Tubular joints in circular hollow section

- Simple form
- Convenient construction
- Good performance
- Low cost

✓ Design of stainless steel tubular joints

- Based on carbon steel sections
- Lack of design rules

\checkmark Aims of study

- Experimental and numerical investigations performed
- To propose the ultimate strength design formula

 02 E ✓ Conte Mater Static 	xper nt of ial ter force	rime exper nsile d loadi	nts of rimen coupc ing te	on T t on tes sts	-joint ts	S	$\alpha = 2l_0/d_0$ $\beta = d_1/d_0$ $2\gamma = d_0/t_0$ $\tau = t_1/t_0$ $I_1 = 4d_1$ N_0,p
Specimen no.	Cho (m d ₀	ord m) <i>t</i> ₀	Bra (m d ₁	ace im) t ₁	t _w (mm)	Preload in chord(kN)	$\begin{array}{c} 1_0 \\ \hline 10 \\ \hline 10 \\ \hline 102 \times 76b \end{array}$
TC102×76a	102	3.0	76	2.0	3.0	0.00	
TC102×76b	102	3.0	76	2.0	3.0	-50.00	
TC102×76c	102	3.0	76	2.0	3.0	-100.00	
TC102×76d	102	3.0	76	2.0	3.0	-150.00	
TC102×76e	102	3.0	76	2.0	3.0	100.00	
TC102×89	102	3.0	89	2.5	3.5	0.00	

<u>02</u>	<u>02</u> Experiments on T-joints						
✓ N	 ✓ Material properties 						
 S30408 (0Cr18Ni9) 							
T se	est ries	Е ₀ (Мра)	σ _{0.2} (Mpa)	n	σ _u (Mpa)		
¢	976	193583	338	6.1	725		
¢	989	189053	388	4.0	806		
Φ	102	203670	387	5.8	767		

Accurately described by Gardner-Nethercot model

✓ Test rig

✓ Arrangement of displacement transducers

- DG1~DG6: to measure the outward deflections of chord side wall
- DG7~DG9: to measure the vertical flexural deflections of chord
- DG10~DG11: to measure the vertical deflections of connecting face of the chord
- DG 12~DG13: to measure the axial shortening of the brace

✓ Test results – joint failure mode

Chord side wall failure

Chord face failure

- Chord side wall outward in the regional joints
- Chord face squeezed into an oval

- Curves with a clear peak load (TC102×76a~d)
- Curves without a clear peak load (TC102×76d~e, TC102×89)
- Adopt Lu's deformation limit to determine the failure load

✓ Test results – joint failure load

Specimen no.	Peak load (kN)	Failure load(kN)	Preload in chord (kN)	Failure mode
TC102×76a	40.29	40.29	0.00	Chord plastic failure
TC102×76b	38.00	38.00	-50.00	Chord plastic failure
TC102×76c	34.00	34.00	-100.00	Chord plastic failure
TC102×76d	28.43	28.43	-150.00	Chord plastic failure
TC102×76e	56.14	52.00	100.00	Chord plastic failure
TC102×89	52.86	51.29	0.00	Chord plastic failure

- The compressive chord preload increased, the joints failure load decreased
- The tensile chord preload significantly strengthened the T-joints

✓ Comparison of test results and code results

- $f_y \longrightarrow \sigma_{0.2}$
- $N_{\sigma 0.2}$: design strength of codes
- $N_{\rm T}$: design strength of tests
- The tested-to-predicted design strength ratios larger than 1
- Conservative predictions of codes

London, 18th to 19th September 2017

03 FE simulation on T-joints ✓ ANSYS

• Element: SHELL 181

<u>03</u> FE simulation on T-joints

✓ FE results – joint failure mode

• The local joint failure mode of FE simulations was same as that of tests

<u>03</u> FE simulation on T-joints

✓ Comparison of test results and FE results

Specimen no.	N _T (kN)	N _F (kN)	$N_{\rm F}/N_{\rm T}$
TC102×76a	40.29	42.97	1.07
TC102×76b	38.00	38.40	1.01
TC102×76c	34.00	35.22	1.04
TC102×76d	28.43	28.54	1.00
TC102×76e	52.00	49.01	0.94
TC102×89	51.29	48.94	0.95

- $N_{\rm T}$: ultimate strength of tests
- $N_{\rm F}$: ultimate strength of FE
- The test results and FE results fitted well

✓ Physical parameters

*d*₀=200mm *d*₁=50, 100, 150, 180mm *t*₀=8.0, 6.0, 4.5, 3.2mm

 $\beta = 0.25 \sim 0.90$ $2\gamma = 25.00, 33.33, 44.44, 62.50$ $N_{0,p}/A_0\sigma_{0.2}$ Q_{II} Q_f

- Chord in-plane bending unavoidably caused by axial brace loads
- Exclude the chord bending effect to derive the local strength

50 50 $2\gamma = 25.00$ $2\gamma = 25.00$ 40 $2\gamma = 33.33$ 40 2γ=33.33 $2\gamma = 44.44$ $2\gamma = 44.44$ $2\gamma = 62.50$ 2γ=62.50 $2\gamma = 62.50$ $2\gamma = 62.50$ 30 30 $\mathcal{O}_{\bar{}}$ $\mathcal{O}_{\bar{}}$ 20 20 2γ=25.00 2γ=25.00 10 10 0 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.3 1.0 FE vs CIDECT FE vs ÉN1993-1-8

\checkmark Geometric function – $Q_{\rm u}$

- β increased, Qu increased and 2γ increased, Qu decreased
- Little difference of Qu between FE results and CIDECT predictions

\checkmark Chord stress function– $Q_{\rm f}$

• Combination of different parameters

\checkmark Chord stress function– $Q_{\rm f}$

• The value of Q_f calculated by related codes imprecise and conservative compared to FE results.

05 Ultimate strength formula of T-joints

\checkmark The proposed formula

$$N_{u} = \frac{\sigma_{0.2}t_{0}^{2}}{\sin\theta}Q_{u}Q_{f}$$

$$Q_{u} = 3.68(1 + 5.60\beta^{2})\gamma^{0.2}$$

$$Q_{f} = 1 + 0.15n_{pl} - 0.55n_{pl}^{2}, n_{pl} < 0$$

$$Q_{f} = 1.0, n_{pl} \ge 0$$

$$n_{pl} = \frac{N_{0,p}}{N_{pl,0}} + \frac{M_{0,ipb}}{M_{pl,0}}$$
refer to EN1993-1-8

<u>05</u> Ultimate strength formula of T-joints

✓ Comparison of test results and predictions

Specimen no.	N _T (kN)	N _M (kN)	$N_{\rm T}/N_{\rm M}$
TC102×76a	40.29	39.18	1.0283
TC102×76b	38.00	34.92	1.0881
TC102×76c	34.00	30.60	1.1112
TC102×76d	28.43	26.16	1.0868
TC102×76e	52.00	47.41	1.0969
TC102×89	51.29	41.66	1.2311
AVG.			1.1071
SD.			0.0670

- $N_{\rm T}$: ultimate strength of tests
- N_M : ultimate strength of proposed formula
- Predictions of proposed formula accurate and safe relatively

- a) The local joint failure modes involved chord side wall failure and chord face failure.
- b) The test results were compared with the design predictions obtained from the CIDECT, EN1993-1-8 for carbon steel. It is shown that the design predicted strength are conservative for the test specimens calculated using the 0.2% proof strength as the yield strength.
- c) The numerical simulations and parametric analysis were carried out on 230 T-joints. The ultimate strength formula of T-joints were proposed. Compared to the test results, the predictions had good accuracy and reliability.

