# Imperial College London

# Effects of material nonlinearity on the global analysis and stability of stainless steel frames

Stainless steel in structures – Fifth International Experts Seminar

Fiona Walport, Leroy Gardner and David Nethercot

**Imperial College London** 

Esther Real and Itsaso Arrayago

Universitat Politècnica de Catalunya

# Outline

- Introduction
- Benchmark frame modelling
- Assessment of design approaches
- Conclusions

### Introduction

EN 1993-1-1 states that "elastic global analysis may be used in all cases" and that "elastic global analysis should be based on the assumption that the stress-strain behaviour of the material is linear, whatever the stress level is"



# Introduction



Displacement

In EN 1993-1-1, second order effects are deemed to be sufficiently small when  $\alpha_{\rm cr} \ge 10$  for an elastic analysis and  $\alpha_{\rm cr} \ge 15$  for a plastic analysis

# Introduction



| Frame case no. | Boundary conditions | Horizontal loading H |
|----------------|---------------------|----------------------|
| 1              | Fixed               | 0.05V                |
| 2              | Fixed               | 0.2 <i>V</i>         |
| 3              | Fixed               | 0.5V                 |
| 4              | Pinned              | 0                    |

# Benchmark frame modelling

# FE modelling

Basic modelling assumptions:

- B310S
- Two stage Ramberg-Osgood material model
  - $E = 200000 \text{ N/mm}^2$ ,  $f_y = 310 \text{ N/mm}^2$ ,  $f_u = 670 \text{ N/mm}^2$ , n = 6.3
- Initial member out-of-straightness 1/1000
- Initial frame out-of-plumbness 1/200
- Modified ECCS residual stress model developed by Yuan et al. (2016) for stainless steel welded I-sections

- Advanced structural analysis commonly carried out using beam elements
  - Beam elements incapable of capturing effects of local buckling



- Advanced structural analysis commonly carried out using beam elements
  - Beam elements incapable of capturing effects of local buckling
- Eurocode cross-section check ignores effect of strain hardening and restricts moment capacity to  $M_{\rm pl}$



- Advanced structural analysis commonly carried out using beam elements
  - Beam elements incapable of capturing effects of local buckling
- Eurocode cross-section check ignores effect of strain hardening and restricts moment capacity to  $M_{pl}$
- CSM strain limit used to simulate local buckling



Ultimate load factors, as predicted by GMNIA with CSM strain limit, taken to be 'true' benchmark failure values

In cases where peak load occurs first, peak load factor taken as ultimate load factor



Ultimate load factors, as predicted by GMNIA with CSM strain limit, taken to be 'true' benchmark failure values

In cases where peak load occurs first, peak load factor taken as ultimate load factor



Ultimate load factors, as predicted by GMNIA with CSM strain limit, taken to be 'true' benchmark failure values

In cases where peak load occurs first, peak load factor taken as ultimate load factor



# Relationship between bending moments from first and second order elastic analyses



Frames with high values of  $\alpha_{cr}$  are not sensitive to second order effects. As  $\alpha_{cr}$  reduces, second order effects become increasingly significant.

# Relationship between bending moments from first and second order plastic analyses



If material nonlinearity is considered, greater deflections ensue due to loss of material stiffness

By ignoring material nonlinearity, maximum second order forces and moments in the considered frames are underestimated

# Reduction to sway stiffness of frame due to material nonlinearity

Material nonlinearity results in increased loss of stiffness.

'Average' reduction can be estimated through ratio of secant stiffness  $K_s$  to initial stiffness K from a first order plastic analysis (MNA)



# Reduction to sway stiffness of frame due to material nonlinearity

Influence of material nonlinearity may be considered by defining a modified elastic buckling load factor  $\alpha_{\rm cr,mod}$ 

$$\alpha_{\rm cr,mod} = \alpha_{\rm cr} \frac{K_{\rm s}}{K}$$
$$k_{\rm amp,mod} = \frac{1}{1 - \frac{1}{\alpha_{\rm cr,mod}}}$$

# Relationship between bending moments from first and second order plastic analyses



The  $\alpha_{cr,mod}$  captures the reduced stiffness and represents the behaviour of the frame after a certain degree of plastification

# Assessment of design approaches

# Assessment of design approaches

- Both EN 1994-1-4 and CSM design approaches evaluated.
- Second order effects may be neglected when  $\alpha_{cr} \ge 10$  for elastic analysis and  $\alpha_{cr} \ge 15$  for plastic analysis.
  - Limit of 15 for plastic analysis recognises the fact that frames have reduced stiffness following plasticity so greater second order effects
  - More consistent approach is to determine increased degree of flexibility on frame by frame basis, as with the proposed  $\alpha_{\rm cr,mod}$  approach

| No. | Name  | Analysis<br>type | Limit                    | Material model | Imperfections     | Cross-section<br>check | Member check                                           | GMNIA            | /Design re | esistance | $(\alpha_{\rm u}/\alpha_d)$ |      |
|-----|-------|------------------|--------------------------|----------------|-------------------|------------------------|--------------------------------------------------------|------------------|------------|-----------|-----------------------------|------|
|     |       |                  |                          |                |                   |                        |                                                        | No. of<br>frames | Mean       | Min.      | Max.                        | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 10               | 1.55       | 1.38      | 1.71                        | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 18               | 1.13       | 0.83      | 1.49                        | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 6                | 1.55       | 1.45      | 1.68                        | 0.05 |
| 4   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 22               | 1.22       | 0.89      | 1.60                        | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic        | Sway + bow + R.S. | EN 1993-1-4            | -                                                      | 28               | 1.08       | 1.00      | 1.26                        | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 10               | 1.09       | 1.02      | 1.16                        | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 18               | 0.97       | 0.80      | 1.11                        | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 6                | 1.02       | 1.00      | 1.06                        | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22               | 1.02       | 0.89      | 1.10                        | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic        | Sway + bow + R.S. | CSM                    | -                                                      | 28               | 1.02       | 1.00      | 1.10                        | 0.03 |

| No. | Name  | Analysis<br>type | Limit                    | Material model | Imperfections     | Cross-section<br>check | Member check                                           | GMNIA            | /Design r | esistance | $(\alpha_u/\alpha_d)$ | )    |
|-----|-------|------------------|--------------------------|----------------|-------------------|------------------------|--------------------------------------------------------|------------------|-----------|-----------|-----------------------|------|
|     |       |                  |                          |                |                   |                        |                                                        | No. of<br>frames | Mean      | Min.      | Max.                  | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 10               | 1.55      | 1.38      | 1.71                  | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 18               | 1.13      | 0.83      | 1.49                  | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 6                | 1.55      | 1.45      | 1.68                  | 0.05 |
| 4   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic        | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 22               | 1.22      | 0.89      | 1.60                  | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic        | Sway + bow + R.S. | EN 1993-1-4            | -                                                      | 28               | 1.08      | 1.00      | 1.26                  | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 10               | 1.09      | 1.02      | 1.16                  | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 18               | 0.97      | 0.80      | 1.11                  | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | б                | 1.02      | 1.00      | 1.06                  | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic        | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22               | 1.02      | 0.89      | 1.10                  | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic        | Sway + bow + R.S. | CSM                    | -                                                      | 28               | 1.02      | 1.00      | 1.10                  | 0.03 |

| No. | Name  | Analysis<br>type | Limit                    | Material<br>model | Imperfections     | Cross-section<br>check | Member check                                           | GMNIA         | /Design r | esistance | $(\alpha_u/\alpha_d)$ |      |
|-----|-------|------------------|--------------------------|-------------------|-------------------|------------------------|--------------------------------------------------------|---------------|-----------|-----------|-----------------------|------|
|     |       |                  |                          |                   |                   |                        |                                                        | No. of frames | Mean      | Min.      | Max.                  | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 10            | 1.55      | 1.38      | 1.71                  | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 18            | 1.13      | 0.83      | 1.49                  | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 6             | 1.55      | 1.45      | 1.68                  | 0.05 |
| 4   | GMNA  | Second order     | α <sub>cr</sub> < 15     | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 22            | 1.22      | 0.89      | 1.60                  | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | EN 1993-1-4            | -                                                      | 28            | 1.08      | 1.00      | 1.26                  | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 10            | 1.09      | 1.02      | 1.16                  | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 18            | 0.97      | 0.80      | 1.11                  | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 6             | 1.02      | 1.00      | 1.06                  | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22            | 1.02      | 0.89      | 1.10                  | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | CSM                    | -                                                      | 28            | 1.02      | 1.00      | 1.10                  | 0.03 |

| No. | Name  | Analysis<br>type | Limit                    | Material<br>model | Imperfections     | Cross-section check | Member check                                           | GMNIA         | GMNIA/Design resistance $(\alpha_u/\alpha_d)$ |      |      |      |
|-----|-------|------------------|--------------------------|-------------------|-------------------|---------------------|--------------------------------------------------------|---------------|-----------------------------------------------|------|------|------|
|     |       |                  |                          |                   |                   |                     |                                                        | No. of frames | Mean                                          | Min. | Max. | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | EN 1993-1-4         | EN 1993-1-4                                            | 10            | 1.55                                          | 1.38 | 1.71 | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | EN 1993-1-4         | EN 1993-1-4                                            | 18            | 1.13                                          | 0.83 | 1.49 | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | EN 1993-1-4         | EN 1993-1-4                                            | 6             | 1.55                                          | 1.45 | 1.68 | 0.05 |
| 4   | GMNA  | Second<br>order  | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | EN 1993-1-4         | EN 1993-1-4                                            | 22            | 1.22                                          | 0.89 | 1.60 | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | EN 1993-1-4         | -                                                      | 28            | 1.08                                          | 1.00 | 1.26 | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | CSM                 | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 10            | 1.09                                          | 1.02 | 1.16 | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | CSM                 | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 18            | 0.97                                          | 0.80 | 1.11 | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | CSM                 | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 6             | 1.02                                          | 1.00 | 1.06 | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | CSM                 | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22            | 1.02                                          | 0.89 | 1.10 | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | CSM                 | -                                                      | 28            | 1.02                                          | 1.00 | 1.10 | 0.03 |

| No. | Name  | Analysis<br>type | Limit                    | Material<br>model | Imperfections     | Cross-section<br>check | Member check                                     | GMNIA            | GMNIA/Design resistance $(\alpha_u / \alpha_d)$ |      |      |      |
|-----|-------|------------------|--------------------------|-------------------|-------------------|------------------------|--------------------------------------------------|------------------|-------------------------------------------------|------|------|------|
|     |       |                  |                          |                   |                   |                        |                                                  | No. of<br>frames | Mean                                            | Min. | Max. | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                      | 10               | 1.55                                            | 1.38 | 1.71 | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                      | 18               | 1.13                                            | 0.83 | 1.49 | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                      | 6                | 1.55                                            | 1.45 | 1.68 | 0.05 |
| 4   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                      | 22               | 1.22                                            | 0.89 | 1.60 | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | EN 1993-1-4            | -                                                | 28               | 1.08                                            | 1.00 | 1.26 | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\rm CSM}$ and $M_{\rm CSM}$ | 10               | 1.09                                            | 1.02 | 1.16 | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{CSM}$ and $M_{CSM}$         | 18               | 0.97                                            | 0.80 | 1.11 | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{CSM}$ and $M_{CSM}$         | 6                | 1.02                                            | 1.00 | 1.06 | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{CSM}$ and $M_{CSM}$         | 22               | 1.02                                            | 0.89 | 1.10 | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | CSM                    | -                                                | 28               | 1.02                                            | 1.00 | 1.10 | 0.03 |

| No. | Name  | Analysis<br>type | Limit                    | Material<br>model | Imperfections     | Cross-section<br>check | Member check                                           | GMNIA            | /Design r | esistance | $(\alpha_u/\alpha_d$ | )    |
|-----|-------|------------------|--------------------------|-------------------|-------------------|------------------------|--------------------------------------------------------|------------------|-----------|-----------|----------------------|------|
|     |       |                  |                          |                   |                   |                        |                                                        | No. of<br>frames | Mean      | Min.      | Max.                 | COV  |
| 1   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 10               | 1.55      | 1.38      | 1.71                 | 0.06 |
| 2   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 18               | 1.13      | 0.83      | 1.49                 | 0.22 |
| 3   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 6                | 1.55      | 1.45      | 1.68                 | 0.05 |
| 4   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | EN 1993-1-4            | EN 1993-1-4                                            | 22               | 1.22      | 0.89      | 1.60                 | 0.19 |
| 5   | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | EN 1993-1-4            | -                                                      | 28               | 1.08      | 1.00      | 1.26                 | 0.07 |
| 6   | LA    | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 10               | 1.09      | 1.02      | 1.16                 | 0.03 |
| 7   | GNA   | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 18               | 0.97      | 0.80      | 1.11                 | 0.12 |
| 8   | MNA   | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 6                | 1.02      | 1.00      | 1.06                 | 0.02 |
| 9   | GMNA  | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway              | CSM                    | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22               | 1.02      | 0.89      | 1.10                 | 0.07 |
| 10  | GMNIA | Second order     | -                        | Plastic           | Sway + bow + R.S. | CSM                    | -                                                      | 28               | 1.02      | 1.00      | 1.10                 | 0.03 |

# EN 1993-1-4 versus CSM – plastic analyses



For very low  $\alpha_{cr}$  values both design approaches lead to results on the unsafe side – such flexible frames are unlikely to be encountered in practice

| No. | Name                                                               | Analysis<br>type | Limit                    | Material<br>model | Imperfections | Cross-section<br>check | Member check | GMNIA/Design resistance $(\alpha_u / \alpha_d)$ |      |      |      |      |
|-----|--------------------------------------------------------------------|------------------|--------------------------|-------------------|---------------|------------------------|--------------|-------------------------------------------------|------|------|------|------|
|     |                                                                    |                  |                          |                   |               |                        |              | No. of frames                                   | Mean | Min. | Max. | COV  |
| 1   | LA                                                                 | First<br>order   | $\alpha_{\rm cr} \ge 10$ | Elastic           | Sway          | EN 1993-1-4            | EN 1993-1-4  | 10                                              | 1.55 | 1.38 | 1.71 | 0.06 |
| 2   | GNA                                                                | Second order     | $\alpha_{\rm cr} < 10$   | Elastic           | Sway          | EN 1993-1-4            | EN 1993-1-4  | 18                                              | 1.13 | 0.83 | 1.49 | 0.22 |
| 3   | MNA                                                                | First<br>order   | $\alpha_{\rm cr} \ge 15$ | Plastic           | Sway          | EN 1993-1-4            | EN 1993-1-4  | 6                                               | 1.55 | 1.45 | 1.68 | 0.05 |
| 4   | GMNA                                                               | Second order     | $\alpha_{\rm cr} < 15$   | Plastic           | Sway          | EN 1993-1-4            | EN 1993-1-4  | 22                                              | 1.22 | 0.89 | 1.60 | 0.19 |
| 5   | GMNIA                                                              | Second           | -                        | Plastic           | Sway + bow +  | EN 1993-1-4            | -            | 28                                              | 1.08 | 1.00 | 1.26 | 0.07 |
| M   | Most accurate and consistent design predictions achieved by always |                  |                          |                   |               |                        |              |                                                 |      |      |      |      |

employing a plastic analysis with CSM checks

|    |       | order          |                          |         |                      |     | $k_{\rm CSM}$ and $M_{\rm CSM}$                        |    |      |      |      |      |
|----|-------|----------------|--------------------------|---------|----------------------|-----|--------------------------------------------------------|----|------|------|------|------|
| 8  | MNA   | First<br>order | $\alpha_{\rm cr} \ge 15$ | Plastic | Sway                 | CSM | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 6  | 1.02 | 1.00 | 1.06 | 0.02 |
| 9  | GMNA  | Second order   | $\alpha_{\rm cr} < 15$   | Plastic | Sway                 | CSM | EN 1993-1-4 with $k_{\text{CSM}}$ and $M_{\text{CSM}}$ | 22 | 1.02 | 0.89 | 1.10 | 0.07 |
| 10 | GMNIA | Second order   | -                        | Plastic | Sway + bow +<br>R.S. | CSM | -                                                      | 28 | 1.02 | 1.00 | 1.10 | 0.03 |

# Conclusions

- A plastic global analysis should always be employed for stainless steel frames to capture accurately the increased stiffness degradation
- First order analysis when  $\alpha_{\rm cr} \ge 15$  and second order analysis when  $\alpha_{\rm cr} < 15$
- Proposal taking account of increased degree of flexibility -First order analysis when  $\alpha_{cr,mod} \ge 10$  and second order analysis (or first order with amplification  $k_{amp,mod}$ ) when  $\alpha_{cr,mod} < 10$  – more consistent frame by frame approach
- The Continuous Strength Method results in significantly more accurate strength predictions compared with EN 1993-1-4

# Imperial College London

# Effects of material nonlinearity on the global analysis and stability of stainless steel frames

Stainless steel in structures – Fifth International Experts Seminar

Fiona Walport, Leroy Gardner and David Nethercot

**Imperial College London** 

Esther Real and Itsaso Arrayago

Universitat Politècnica de Catalunya