

The Continuous Strength Method for stainless steel columns

I. Arrayago, E. Real, E. Mirambell, L. Gardner

Fifth International Experts Seminar: Stainless Steel in Structures London, UK

18-19 September 2017

Stainless steel

2/20

Mechanical behaviour:

- Different from carbon steel
- Nonlinear stress-strain diagram
- Strain hardening

Main standards for structural stainless steel:

- EN1993-1-4 SEI/ASCE 8-02
- AS/NZS4673

Based on carbon steel standards, provide supplementary rules and modifications Nonlinear behaviour and strain hardening effects **not** considered

Continuous Strength Method

Deformation-based design approach that:

- incorporates strain hardening effects for stocky cross-sections
- avoids effective width calculations for slender cross-sections

Cross-section slenderness

$$\lambda_p = \sqrt{\frac{\sigma_{0.2}}{\sigma_{cr}}}$$

 $\sigma_{0.2}$ yield strength

 σ_{crl} critical elastic local buckling stress

Flexural buckling of stainless steel columns

Traditional approach:

reduction of the cross-sectional strength $N_{c,Rk}$ due to flexural buckling

$$N_{b,Rd} = \frac{\chi N_{c,Rk}}{\gamma_{M1}} \qquad \qquad \chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}} \le 1 \\ \phi = 0.5 \cdot \left[1 + \eta + \bar{\lambda}^2\right] \qquad \qquad \bar{\lambda} \text{ member slenderness}$$

Different Standards: generalized imperfection factor η

AS/NZS4673: EN1993-1-4: $\begin{bmatrix} c_{\overline{2}} & \overline{z} & \beta & \overline{z} \end{bmatrix}$ $\eta = \alpha (\bar{\lambda} - \bar{\lambda}_0)$ Buckling curve *c*: $\alpha = 0.49$, $\overline{\lambda}_0 = 0.4$

$$\eta = \alpha \left[(\lambda - \lambda_1)' - \lambda_0 \right]$$

 $\alpha, \beta, \overline{\lambda}_0 \text{ and } \overline{\lambda}_1 \text{ parameters for SS grades}$

Revised buckling curves

Partial safety factor γ_{M1} for buckling curve *c* exceeded 1.10

 $\alpha = 0.49, \, \bar{\lambda}_0 = 0.3$ austenitic and duplex $\alpha = 0.49, \, \bar{\lambda}_0 = 0.2 \, \text{ferritic}$

Afshan et al. (2017)

1. Introduction

Flexural buckling of stainless steel columns

Failure at low stresses (before σ_p is reached)

Flexural buckling of stainless steel columns

5/20

The **CSM** excellent resistance predictions for cross-section resistance

Some stainless steels columns might exceed yielding ($\sigma_{0,2}$)

The extension of the **CSM** to **member** behaviour to improve column resistance predictions

The aim of this paper is to:

- 1) Develop the CSM approach for columns
- 2) Assess the method for stainless steel RHS columns against exp. and FE data
- 3) Validate the method (reliability analysis)

Development of the method

From the classical elastic flexural equilibrium equation, second order elastic check of the most heavily loaded cross-section:

Traditionally limited to yielding

CSM compressive and bending resistances can be adopted in cross-section check:

$$\underbrace{N_{b,CSM}}_{N_{CSM}} + \frac{1}{\left(1 - \frac{N_{b,CSM}}{N_{cr}}\right)} \underbrace{M_{cSM}}_{M_{CSM}} = 1$$

Solving the equation the CSM flexural buckling resistance $N_{b,CSM}$ can be determined

Development of the method (cont.)

The equation can be re-written in terms of stresses considering:

$\sigma_{b,CSM} = N_{b,CSM}/A$	Auxiliary function g	1
$\sigma_{CSM} = N_{CSM} / A$	$\sigma = \frac{M_{CSM}}{\sigma_{0.2}} \sigma_{0.2}$	
$\sigma_{cr} = N_{cr}/A$	$g = \frac{1}{M_{pl}} \frac{1}{\sigma_{CSM}} \varphi$	ψ : shape factor

Ayrton-Perry expression

$$\left(\sigma_{CSM} - \sigma_{b,CSM}\right) \cdot \left(\sigma_{cr} - \sigma_{b,CSM}\right) = \sigma_{b,CSM} \cdot \sigma_{cr} \cdot \eta^* \quad \text{with} \quad \eta^* = \frac{e_0 \cdot A}{W_{el} \cdot g}$$

Modified generalized imperfection factor

Introducing the non-dimensional slenderness $\bar{\lambda}$ and slenderness $plat \underbrace{e_0 \cdot A}_{W_{el}}$ $\eta^* = \frac{\alpha}{g} \left(\bar{\lambda} - \bar{\lambda}_0 \right) = \frac{1}{g} \alpha \left(\bar{\lambda} - \bar{\lambda}_0 \right) = \frac{1}{g} \eta$ with $\alpha = \frac{\pi \sqrt{E/\sigma_{0.2}}}{\frac{1}{\sqrt{Classic}}}$ generalized product of the second state of

Development of the method (cont.)

 η^* depends on cross-section slenderness and material (σ_{CSM} and $M_{\text{CSM}})$

Strain hardening effects directly introduced in the formulation

Development of the method for slender cross-sections

STANDARDS: Effective Width Method (EWM)

CSM: Strength curve based on gross-section properties

From previous formulation: $g = 1 \longrightarrow \eta^* = \frac{1}{g}\eta = \eta$

$$\frac{N_{b,CSM}}{N_{b,0}} = \frac{1}{\bar{\lambda}_p^{1.05}} \left(1 - \frac{0.222}{\bar{\lambda}_p^{1.05}} \right)$$

 $N_{b,0}$ is the flexural buckling resistance of the fully effective cross-section

Susceptibility to local buckling measured by
$$\bar{\lambda}_p = \sqrt{\frac{N_{b,0}}{N_{cr,l}}}$$

3. CSM for stainless steel columns

"Modified" buckling curves

Validation of the FE model

- Against tests on stainless steel RHS columns
- Abaqus, S4R elements

Parametric study

- RHS and SHS
- Full cross-section $\overline{\lambda}_p$ and member $\overline{\lambda}$ slenderness ranges covered
- Austenitic, ferritic and duplex grades

1500 FE models and 188 exp. results

5. Assessment of the method for stocky cross-sections

EN1993-1-4 buckling curve

Revised curves

5. Assessment of the method for stocky cross-sections

EN1993-1-4 buckling curve

Revised curves

		CSM approach		No strain hardening		
		N _{b,CSM,EN} /N _u	N _{b,CSM,rev} /N _u	N _{b,EN} /N _u	N _{b,rev} /N _u	
Austanitia	Mean	0.94	0.91	0.88	0.85	
Austenitic CO	COV	0.123	0.114	0.113	0.104	
Forritio	Mean	0.92	0.88	0.87	0.83	
CC CC	COV	0.076	0.067	0.075	0.066	
Duplay	Mean	0.91	0.88	0.87	0.84	
Duplex	COV	0.066	0.065	0.064	0.062	
	Mean	0.92	0.89	0.87	0.83	
All	COV	0.083	0.075	0.080	0.072	

CSM approach provides more accurate column resistance predictions. Highest $N_{b,pred}/N_u$ ratios obtained for the buckling curve in EN1993-1-4.

6. Assessment of the method for slender cross-sections

EN1993-1-4 buckling curve

Revised curves

		CSM approach		Effective width method	
		N _{b,CSM,EN} /N _u	N _{b,CSM,rev} /N _u	N _{b,EN} /N _u	N _{b,rev} /N _u
Austopitio	Mean	0.88	0.86	0.94	0.91
Austennic CC	COV	0.094	0.090	0.114	0.107
Forritio	Mean	0.84	0.80	0.87	0.81
remuc	COV	0.092	0.093	0.114	0.125
Duploy	Mean	0.84	0.82	0.90	0.87
Duplex	COV	0.069	0.071	0.114	0.115
	Mean	0.85	0.81	0.89	0.84
All	COV	0.090	0.093	0.118	0.127

Similar accuracy for both methods.

CSM: simpler and easier, no effective width calculations.

EN1990, Annex D

EN1993-1-4 γ_{M1}=1.10

Stocky cross-sections (strain hardening)

	Grade	b	V_δ	V _r	γ _{M1}
EN1993-1-4 [1] buckling curve	Austenitic	1.113	0.122	0.145	1.08
	Ferritic	1.035	0.074	0.100	1.10
	Duplex	1.126	0.066	0.089	1.03
Revised buckling curves [31]	Austenitic	1.143	0.113	0.138	1.03
	Ferritic	1.101	0.066	0.094	1.01
	Duplex	1.178	0.066	0.088	0.99

Slender cross-sections (local buckling)

	Grade	b	V_{δ}	V _r	γ_{M1}
EN1993-1-4 [1] buckling curve	Austenitic	1.102	0.097	0.125	1.08
	Ferritic	1.205	0.091	0.113	1.02
	Duplex	1.194	0.069	0.090	0.99
Revised buckling curves [31]	Austenitic	1.136	0.092	0.121	1.03
	Ferritic	1.280	0.089	0.112	0.95
	Duplex	1.236	0.073	0.093	0.97

CSM approach for columns can be safely applied to stainless steel RHS and SHS

- New approach for stainless steel columns based on the Continuous Strength Method presented that incorporates strain hardening effects and avoids effective width calculations
- The method is equivalent to the traditional approach but considers a modified generalized imperfection factor (depends on cross-section slenderness and material)

• The assessment showed that the CSM approach improves the prediction of column resistances.

- The proposed approach is analytic: can be updated with changing buckling curves.
- The proposed approach is analytic: can be used for different materials (carbon steel, aluminium) and cross-sections (CHS, I-sections) for which the CSM is developed.
- Direct impact in beam-column checks (adoption of accurate end-points)
- Further research is needed to study the applicability of the method.

The Continuous Strength Method for stainless steel columns

I. Arrayago, E. Real, E. Mirambell, L. Gardner

Fifth International Experts Seminar: Stainless Steel in Structures London, UK

18-19 September 2017