STIFFENING EFFECTS ON THE SHEAR BEHAVIOUR OF SINGLE PERFORATED LEAN DUPLEX STAINLESS STEEL RECTANGULAR HOLLOW BEAMS

য়েন্হুল্ড Sonu J.K and Konjengbam Darunkumar Singh Indian Institute of Technology Guwahati, India

Fifth International Structural Stainless Steel Experts Seminar (18-19 September 2017, London)

Contents:

- 1. Introduction
- 2. Objectives
- 3. Results and discussions
- 4. Conclusions

Introduction: Perforations, Stiffened Perforations ~ examples

~ Perforations can result in adverse effect on the structural performance

Stiffeners ~ to compensate reduced strength

Introduction: Lean Duplex Stainless Steel (LDSS) ~ Constructions

LDSS ~ Less expensive (due to low nickel content), good corrosion resistance, high temperature properties, adequate weldability and fracture toughness (e.g. Theofanous and Gardner, Saliba & Gardner, 2013).

Introduction: Lean Duplex Stainless Steel (LDSS) ~ Material properties

Trade name	LDX 2101®, Lean Du	plex			
Standards	Material No. 1.4162	EN Designation X2CrMnNiN22-5-	UNS 2 \$32101		
Description	1.4162 is a LEAN-DUP	PLEX chromium stainless s	teel with additional man	ganese, nickel, molybd	enum and copper.
Special properties	Very good corrosion r	esistance. Good mechanic	al characteristics. Good	endurance strength. G	ood weldability.
Chemical Composition	C %	Si ≤ %	Mn ≤ %	P ≤ %	S ≤ %
	≤ 0.04	1.00	4.00-6.00	0.04	0.015
	Cr %	Mo %	Ni %	N %	Cu %
	21.0-22.0	0.10-0.80	1.35-1.70	0.20-0.25	0.10-0.80
Mechanical Properties 20°C	Hardness HB 30 ≤ HB	0.2% Yield strength R _≠ ≥ N/mm ²	Tensile strength R_ N/mm ²	Elongation A₃ ≥ %	Modulus of elasticity kN/mm ²
	290	450	> 650	30	200
Physical Properties 20°C	Density g/cm ³	Specific heat capacity J/kg K	Thermal conductivity W/m K	Electrical resistivity Ω mm ² /m	
	7.7	500	15	0.8	
Suitable welding filler materials	CN 24/9 LDX PW-FD				
Application	Chemical, pulp and ce	llulose industry, oil and g	as industry		
Available forms for 1.416	2 Sheets/Plates	Bars Tubes/Pipe	s Fittinas		
1			- Co ang		

Introduction: Lean Duplex Stainless Steel (LDSS) ~ EN 1993-1-4:2006+A1

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1993-1-4:2006+A1

June 2015

		Product form								
Type of stainless Grade steel		Cold rolled strip		Hot rolled strip		Hot rolled plate		Bars, rods and sections		
	Nominal t	Nominal thickness t								
	$t \le 8 \text{ mm}$		$t \le 13,5 \text{ mm}$		$t \le 75 \text{ mm}$		$t \le 250 \text{ mm}$			
		f_{y}	$f_{\rm u}$	f_{y}	$f_{\rm u}$	f_{y}	$f_{\rm u}$	f_{y}	$f_{\rm u}$	
		N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	
	1.4547	320	650	300	650	300	650	300	650	
	1.4318	350	650	330	650	330	630	-	-	
	1.4062	530 e	700 e	480 ^f	680 ^f	450 g	650 g	380 ^b	650 ^b	
Austenit ic- ferritic steels	1.4162	530 e	700 e	480 ^f	680 ^f	450	650	450 ^b	650 ^b	
	1.4482	500 e	700 e	480 f	660 f	450	650	400 ^b	650 ^b	
	1.4662	550 e	750 e	550	750	480	680	450 ^b	650 ^b	
	1.4362	450	650	400	650	400	630	400 b	600 ^b	
	1.4462	500	700	460	700	460	640	450 b	650 ^b	
^a The n	ominal val	ues of f_{y} an	d f ₁₁ given in	n this table	may be use	d in design	without tak	ing special	account of	

^a The nominal values of f_y and f_u given in this table may be used in design without taking special account anisotropy or strain hardening effects.

^b $t \le 160 \text{ mm}$

c $t \le 25 \text{ mm}$

d $t \le 100 \text{ mm}$

• $t \le 6,4 \text{ mm}$

f $t \le 10 \text{ mm}$

^g $t \le 50 \text{ mm} (f_y = 430 \text{ N/mm}^2 \text{ and } f_u = 625 \text{ N/mm}^2 \text{ for } 50 \text{ mm} < t \le 75 \text{ mm})$

Introduction: Hollow steel members

Hollow steel beams ~ Better torsional rigidity, usable interior space, aesthetically pleasing

Objectives: Stiffened perforated hollow steel beams ~ shear capacity

Objective

□To assess the shear behaviour of stiffened single perforated LDSS rectangular hollow beam, considering diagonal / inclined pattern.

>More specifically, the effect of variation in cross-sectional dimensions (or slenderness) e.g. width (b_s) , thickness (t_s) and length (I_s) of inclined (or diagonal) stiffener pattern is investigated.

FE Modelling: Geometry, mesh, boundary conditions, loading...

Beam

 $h_w/t_w = 300 \ (h_w = 600 \text{ mm}, t_w = 2 \text{ mm}), t_f/t_w = 5 \ (t_f = 10 \text{ mm}), w_f/h_w = 0.33 \ (w_f = 200 \text{ mm}), a/h_w = 1.00 \ (a = 600 \text{ mm})$ Stiffener

$$l_s/h_w = 1.00 - 1.75$$
 ($l_s = 300-515$ mm), $b_s/h_w = 0.04 - 0.10$ ($b_s = 24 - 60$ mm), $t_s/t_w = 1-7$ ($t_s = 2-14$ mm)

FE Modelling: FE Validation ~ *Material properties*

Theofanous and Gardner (2010)

SHS 60 × 60 × 3 –	B2 specimen							
a) Tension flat ma	terial properties							
E_o (MPa)) $\sigma_{0.2}$ (MPa) $\sigma_{1.0}$ (MPa) σ_{u} (MPa) Compound R-O coefficients							
209797	755	819	839	6.0	4.3			
b) Compression fla	at material properti	es						
206430	711	845	-	5.0	2.7			
c) Tensile corner n	naterial properties				-			
212400 885		1024 1026		6.3	4.0			

Specimen	<i>L</i> (mm)	<i>B</i> (mm)	<i>D</i> (mm)	<i>t</i> (mm)	r _i (mm)
SHS 60x60x3-B2	1100	60	60	3.10	2.3

Saliba and Gardner (2013)

Plate girder	L (mm)	<i>a</i> (mm)	<i>e</i> (mm)	h_w (mm)	<i>b</i> (mm)	$t_f(mm)$	t_w (mm)	t_s (mm)	b_s	a/h_w
									(mm)	
I - 600 x 200 x 12 x 4 - 1	1360	600	80	598.8	200.1	12.4	4.1	20.9	98	1
I - 600 x 200 x 12 x 8 - 1	1360	600	80	600.3	200.1	12.5	8.2	20.6	96	1

FE Modelling: Validation ~ Square beam, Plate girder

A) LDSS square hollow beam (Theofanous and Gardner, 2010)

* Good agreement with experimental results

Results: Effect of stiffener length $(I_s) \sim b_s/h_w = 0.04$ ($b_s = 24$ mm)

A) Slender section ($t_s/t_w = 1.0$ ($t_s = 2$ mm; $t_w = 2$ mm)

 V_{y} = Shear yield capacity

Results: Effect of stiffener thickness $(t_s) \sim b_s/h_w = 0.04 (b_s = 24 \text{ mm})$

Results: Effect of stiffener breadth $(b_s) \sim \text{short stiffener } (I_s/d_o = 1.0)$

A) Slender section ($t_s/t_w = 1.0$)

$$b_{\rm s}/h_{\rm w} = 0.10$$

B) Stocky section ($t_s/t_w = 7.0$)

 $b_{\rm s}/h_{\rm w}$ = 0.04

 $b_{\rm s}/h_{\rm w} = 0.10$

Results: Effect of stiffener breadth $(b_s) \sim \text{short stiffener } (\frac{l_s}{d_0} = 1.0)$

Results: Effect of stiffener breadth (b_s) ~ long stiffener ($l_s/d_o = 1.75$)

A) Slender section ($t_s/t_w = 1.0$)

Results: Effect of stiffener breadth $(b_s) \sim \text{long stiffener} (I_s/d_o = 1.75)$

FE studies on the shear behaviour of single perforated LDSS rectangular hollow beam, stiffened with inclined stiffeners have been presented considering cross-sectional dimensions (or slenderness) e.g. length (I_s), width (b_s) and thickness (t_s) as parameters. Based on the investigation, the following conclusions have been drawn:

□ The rate of increase in shear capacity (V_u/V_y) increases with increasing stiffener length. It is also seen that it is possible to achieve the strength of unperforated beam, with larger stiffener length and thickness, e.g. for the longest and thickest stiffener $(I_s/d_o = 1.75 \& t_s/t_w = 7)$ considered, the stiffened perforated beam has achieved the shear capacity of unperforated beam.

□ There is no significant change in the value of shear capacity for increase in stiffener width, suggesting that there is not much benefit in increasing the cross-sectional dimension (in terms of b_s and t_s) for short length stiffeners ($I_s/d_o = 1.0$).

□In the case of long stiffeners, an improved enhancement in shear capacity can be seen even for thin stiffeners e.g. an increase of ~19% in V_u/V_y as compared to non stiffened case, can be observed for $b_s/h_w = 0.10$ (or $b_s = 60$ mm).

Whereas for thick stiffeners (e.g. $t_s/t_w = 7$), almost full strength of the unperforated beam could be achieved at lower b_s (e.g. $b_s = 0.04$).

Thank you very much for your patience

