

Standardised material properties for numerical parametric studies of structural stainless steel elements

Sheida Afshan (Brunel University London)

Ou Zhao (Nanyang Technological University) Leroy Gardner (Imperial College London)

Presentation outline

- Overview and current practice for material modelling in numerical studies
- Proposals for modelling stress-strain response of stainless steels in numerical parametric studies
 - 1) Proposed standardised average material properties
 - 2) Proposed predictive models for material properties of cold-formed stainless steel sections
- Key conclusions

Stainless steel material modelling overview

- Numerical modelling has become a common tool for analysis and design of stainless steel structures
- Accurate description of the material stress-strain response is a crucial aspect of numerical modelling of steel structures
- The two-staged Ramberg-Osgood model is commonly used to describe the stress-strain response of stainless steels

Key input R-O model parameters

Database of material test results

- Typical values for f_{0.2}, f_u, E, n and m from a comprehensive database of material tests were sought – literature test programmes
- The collected test data were grouped based on:
 - Types of stainless steel:
 - Austenitic (A)
 - Duplex (D)
 - Ferritic (F)
 - Types of product that exhibit similar characteristics:

Proposed standardised average material properties

		Querte	Basic material properties						-	
Material type	Structural sections	Grade	f _y	f _u	ε _u	n	m			
		А	280	580	0.50	9.1	2.3		fy	and f _u
Hot-rolled sections		D	530	770	0.30	9.3	3.6		In	crease
		F	320	480	0.16	17.2	2.8			\wedge
		А	280	580	0.50	9.1	2.3			
Hot-rolled plate/sheet (to form welded profiles)		D	530	770	0.30	9.3	3.6			
. ,		F	320	480	0.16	17.2	2.8			
		А	280	580	0.50	9.1	2.3			
Cold-rolled sheet/flat regions of press-braked sections		D	530	770	0.30	9.3	3.6			
		F	320	480	0.16	17.2	2.8			
Flat faces of cold-formed box-		А	460	700	0.20	7.1	2.9			Ϋ́
sections/curved walls of cold-		D	630	780	0.13	7.5	4.8			\checkmark
formed CHS		F	430	490	0.06	11.5	4.6		Du	uctility ε _u
		А	640	830	0.20	6.4	7.1		de	creases
Corner regions of cold-formed box sections		D	800	980	0.03	6.1	6.7			
		F	560	610	0.01	5.7	6.8	イ	7	
Corner regions of press-		A	640	830	0.20	6.4	7.1	Lev	el of	
braked sections		D	800	980	0.03	6.1	6.7	cold-	work	
		F	560	610	0.01	5.7	6.8	incre	ases	

Statistical data – Material strength f_v and f_u

Collected statistics on material data from key European stainless steel producers and literature for **Mean** and **Scatter** of yield strength and ultimate tensile strength

Material	Product	Source	No. of	Thickness	f _{y,mean}	σ	COV	f _{y,mean} /	f _{y,k} /	
type	type		tests n	range (mm)	(N/mm^2)	(N/mm^2)		$f_{y,min}$	$f_{y,min}$	
	C	[5]	2572	2.49-6.35	312	15.2	0.049	1.34	1.24	
	C	Producer	-	-	314	22.9	0.073	1.34	1.19	
	u	[7,8]	-	4.0	290	-	-	1.37	-	
Austanitia	п	Producer	-	-	326	25.3	0.078	1.54	1.35	
Austennic		[6]	>3000	5.0-50	294	20.6	0.070	1.38	1.23	
	D	[7,8]	-	15	283	-	-	1.33	-	
	r	Producer	1368	-	309	33.0	0.107	1.44	1.20	
		Producer	-	-	293	28.8	0.099	1.40	1.19	Over Strength Datio
	Average				308			1.40	1.23	Over-Strength Ratio
		[5]	239	2.49-6.35	586	26.5	0.045	1.17	1.09	fymean
		[9]	-	1.0	650	-	-	1.27	-	$OSR = \frac{1}{c}$
	С	Producer	5749	0.4-3.5	631	27.3	0.043	1.28	1.19	^f y,nominal
		Producer	-	-	610	30.9	0.052	1.26	1.16	
		Producer	-	<6.4	550	7.5	0.014	1.04	1.01	
Dupley		[9]	-	4.0	595	-	-	1.27	-	Coefficient of Variation
Duplex	Н	Producer	-	-	591	49.0	0.087	1.33	1.16	Standard deviation
		Producer	-	<10	549	12.2	0.022	1.14	1.10	$COV = \frac{Standard deviation}{2}$
		[6]	>300	5.05-50	524	19.6	0.037	1.14	1.07	f _{v mean}
	Р	[9]	-	15	505	-	-	1.11	-	y,mean
		Producer	-	-	520	18.2	0.035	1.19	1.13	
	Average				570			1.20	1.12	
		Producer	-	-	331	19.0	0.059	1.29	1.17	
	С	Producer	-	-	349	21.4	0.062	1.45	1.31	
	Ũ	Producer	-	>10	358	19.3	0.054	1.51	1.38	
Ferritic		Producer	438	1.25-2.0	352	16.9	0.048	1.21	1.12	
1 011110	Н	Producer	-	-	354	34.0	0.097	1.46	1.25	
		Producer	-	-	371	26.4	0.071	1.33	1.18	
	Р	Producer	-	-	347	37.0	0.107	1.39	1.16	
	Average				352		i	1.38	1.22	

Statistical data vs Collected data

Over-strength ratio and **COV** for yield strength f_y

Grade	f _{y,mean} /f _{y,nom}	COV
Austenitic	1.3	0.060
Duplex	1.1	0.030
Ferritic	1.2	0.045

Ove	er-stren	gth	ratio	and	COV
for	ultimente	+	aile at		th f

for ultimate tensile strength **f**_u

Grade	f _{u,mean} /f _{u,nom}	COV
Austenitic	1.1	0.035
Duplex	1.1	0.035
Ferritic	1.1	0.050

Material type	Structural sections	Grade	f _y	f _u		
		А	280	580		
Hot-rolled sections		D	530	770		
		F	320	480		
Hot-rolled		А	280	580		
plate/sheet (to form welded		D	530	770		
profiles)		F	320	480		
Cold-rolled		A	280	580		
sheet/flat regions of press-braked		D	530	770		
sections		F	320	480		

	f _y /f _{y,min}	f _u /f _{u,min}
Austenitic	1.17-1.40	1.05-1.16
Duplex	1.01-1.18	1.03-1.18
Ferritic	1.07-1.29	1.07-1.17

The proposed f_y and f_u values tie in with the over-strength factors

Section specific material properties

- The proposed material properties correspond to average measured values across a range of products and section geometries
- For cold-formed sections:
 - The material properties will in fact be cross-section specific
 - Since the level of cold-work, which influences the resulting stress-strain curve, is dependent on the section geometry
- Section specific material properties may be determined from predictive models for:
 - Press-braked sections and
 - Cold-formed tubular sections
- Due to the dependency on section geometry, the section specific material properties will sometimes be above the basic (average) values and sometimes below

Predictive models for cold-formed sections

Mechanically based predictive models developed and verified against collated tests; two step process:

- 1. Estimate plastic strain induced during section forming using simple geometric relationships (t and R)
- 2. Determine stress corresponding to this plastic strain from material model to use as enhanced yield strength

ANNEX B Strength enhancement of cold formed sections

- 1. Afshan, S., Rossi, B. and Gardner, L. (2013). Strength enhancements in cold-formed structural sections Part I: Material testing. Journal of Constructional Steel Research. 83, 177-188.
- 2. Rossi, B., Afshan, S. and Gardner, L. (2013). Strength enhancements in cold-formed structural sections Part II: Predictive models. Journal of Constructional Steel Research. 83, 189-196.

Enhanced flat, corner and CHS strength

 f_{yc} is the predicted enhanced yield strength of the corner region and is calculated as:

 f_{yf} is the predicted enhanced yield strength of the section flat face and is calculated as:

$$\begin{split} f_{y,cf} &= K \big(\epsilon_f + \epsilon_{t,0.2} \big)^{n_p} \quad \text{but} \ f_y < f_{y,cf} < f_u \end{split} \begin{array}{l} \text{Enhanced flat strength} \\ \\ \epsilon_c &= [t/900] + [\pi t/2(b+h-2t)] \end{array} \end{array}$$

 f_{vCHS} is the predicted enhanced yield strength of a CHS and is calculated as:

 $f_{y,cf} = K(\epsilon_{CHS} + \epsilon_{t,0.2})^{n_p}$ but $f_y < f_{y,cf} < f_u$

Enhanced CHS strength

 $\epsilon_{CHS} = t/2(d-t)$ CHS strain

Predictive models for f_u and ϵ_u (From Annex A of SSDM)

• Ultimate tensile stress

$$f_{u,cf} = \frac{f_{y,cf}}{[0.2 + 185f_{y,cf}/E]}$$

For austenitic and duplex grades

$$f_{u,cf} = \frac{f_{y,cf}}{[0.46 + 145f_{y,cf}/E]}$$

- Strain at ultimate tensile stress

$$\epsilon_{u,cf} = 1 - \frac{f_{y,cf}}{f_{u,cf}}$$

For austenitic and duplex grades

$$\epsilon_{u,cf} = 0.6 \left[1 - \frac{f_{y,cf}}{f_{u,cf}} \right]$$

For ferritic grade

For ferritic grade

I. Arrayago, E. Real, and L. Gardner. Description of stress-strain curves for stainless steel alloys. Materials and Design, 87:540–552, 2015.

Conclusions and summary

Material type	Structural sections	Grade		Basic material properties			Section sp	pecific mater	rial properties*	Geometric	Residual stress	
waterial type	Structural sections	Ulauc	f _y	fu	ես	n	m	f _{y,cf}	f _{u,cf}	٤ _{૫,cf}	imperfections	model
Hot-rolled sections		A	280	580	0.50	9.1	2.3	-		_		[47]
		D	530	770	0.30	9.3	3.6	_	_		[25] and [26]	
		F	320	480	0.16	17.2	2.8					
Hot-rolled		Α	280	580	0.50	9.1	2.3		_	_	[48]	
plate/sheet (to form welded		D	530	770	0.30	9.3	3.6	_				[48]
profiles)		F	320	480	0.16	17.2	2.8					
Cold-rolled sheet/flat regions of press-braked		Α	280	580	0.50	9.1	2.3					
		D	530	770	0.30	9.3	3.6	_	_	_	[25]	[25]
sections		F	320	480	0.16	17.2	2.8					
Communication of		Α	640	830	0.20	6.4	7.1	Eq. (3)	Eq. (11)	Eq. (13)	[25]	[25]
press-braked		D	800	980	0.03	6.1	6.7					
sections		F	560	610	0.01	5.7	6.8		Eq. (12)	Eq. (14)		
Flat faces of		Α	460	700	0.2	7.1	2.9	- Eq. (4) Eq. (5)	Eq. (11)	Fa (12)	[25]	[25]
sections/curved		D	630	780	0.13	7.5	4.8			Eq. (13)		
formed CHS		F	430	490	0.06	11.5	4.6		Eq. (12)	Eq. (14)		
Compressions of		Α	640	830	0.20	6.4	7.1		Fa (11)	Fa (12)		
cold-formed box		D	800	980	0.03	6.1	6.7	Eq. (3)	Eq. (11)	Eq. (13)	[25]	[25]
sections		F	560	610	0.01	5.7	6.8		Eq. (12)	Eq. (14)	1	

*n and m values for section specific material properties may be taken as those given under basic material properties in rows 4-6.

Standardised material properties for numerical parametric studies of structural stainless steel elements

Sheida Afshan (Brunel University London)

Ou Zhao (Nanyang Technological University) Leroy Gardner (Imperial College London)

Predictive models for f_v - principle

Strength enhancement (and loss of ductility) due to cold-working:

