

AN INVESTIGATION OF AUSTENITIC STAINLESS STEEL HOT ROLLED ANGLE SECTIONS UNDER AXIAL COMPRESSION

Arthur A. de Menezes - Civil Eng. Graduate Program – UERJ, Brasil <u>Pedro C. G. da S. Vellasco</u> – UERJ, Brasil Luciano R. O. de Lima – UERJ, Brasil André T. da Silva – UERJ, Brasil

Summary

- Introduction
- Background & Stainless Steel Design Standards
- Experimental Investigation
- Design Procedures Comparison
- Final Considerations

Introduction

- Vast number → stainless steel design standards → still based → carbon steel design concepts → very conservative → stainless steel
- Eurocode 3 Part 1-4 → most frequently updated → still a wide range of concepts and parameters → be confirmed & validated

Introduction

- Additional improvements → stainless steel structural design → Continuous Strenght Method (CSM) → centred → criteria development → efficient design → stainless structural elements
- Few studies → stainless steel compressed elements → even less → hot rolled sections → motivation → investigation → angle cross section tests

Background & Stainless Steel Design Standards
Eurocode 3 Part 1-4
Local buckling of angles → compression → cross-section class:

- Eurocode 3 Pt 1-4 → no criteria → stainless hot rolled profiles
- Comparisons $\rightarrow \alpha = 0.49 \& \lambda_0 = 0.40 \rightarrow$ open cold formed sections flexural buckling
- $\alpha = 0.34 \& \lambda_0 = 0.20 \rightarrow torsional \& flexural-torsional buckling$

Buckling mode	Type of member	α	$\overline{\lambda_0}$
Flexural	Cold formed open sections	0.49	0.40
	Hollow sections (welded and seamless)	0.49	0.40
	Welded open sections (major axis)	0.49	0.20
	Welded open sections (minor axis)	0.76	0.20
Torsional e Flexural-torsional	All members	0.34	0.20

 Continuous Strength Method - CSM Motivation → 81 Stub column Tests & Eurocode 3 Predictions

Low slenderness

 → ultimate loads
 → underestimated
 by up to 50%

- CSM Material → simple bilinear function
- Stress strain curve \rightarrow 0.2% stress \rightarrow initial E
- From this point → module decreases to E_{sh} → material strain hardening until → 0.16 ε deformation limit → reaches → material ultimate tensile rupture stress

$$E_{sh} = \frac{f_u - f_y}{0.16\varepsilon_u - \varepsilon_y}$$

$$\varepsilon_u = 1 - \frac{f_y}{f_u}$$

 Background & Stainless Steel Design Standards
 Comparison → CSM model & Ramberg-Osgood formulation

For compact sections \rightarrow ultimate stress:

$$f_{csm} = f_y + E_{sh} \varepsilon_y \left(\frac{\varepsilon_{csm}}{\varepsilon_y} - 1 \right)$$

Experimental Investigation 11 hot rolled angle tests → L64x64x6.35 → austenitic stainless steel ASTM A276 304.

2 compression tests → material characterization

Test	Length (mm)	bı (mm)	tı (mm)	b ₂ (mm)	t ₂ (mm)
Characterization 1	250	64,00	6,50	64,00	6,54
Characterization 2	250	64,30	6,48	64,00	6,34
L64x64x6.4-AUS-500-1-23.09	488	63,63	6,40	63,56	6,48
L64x64x6.4-AUS-500-2-23.09	491	63,95	6,42	63,76	6,32
L64x64x6.4-AUS-750-1-27.09	738	63,68	6,60	63,78	6,43
L64x64x6.4-AUS-750-2-28.09	736	63,75	6,57	63,67	6,34
L64x64x6.4-AUS-1000-1-25.08	1000	63,72	6,42	63,42	6,65
L64x64x6.4-AUS-1000-2-01.09	1000*	63,60	6,55	63,73	6,35
L64x64x6.4-AUS-1000-3-19.09	1000*	63,65	6,52	63,78	6,36
L64x64x6.4-AUS-1250-1-05.10	1238	63,53	6,52	63,75	6,29
L64x64x6.4-AUS-1250-2-07.10	1241	63,55	6,47	63,78	6,34
L64x64x6.4-AUS-1500-1-13.10	1491	63,70	6,44	63,82	6,50
L64x64x6.4-AUS-1500-2-13.10	1492	63,69	6,37	63,78	6,42

Test Layout

Experimental Investigation Material Properties 2 compression 250 mm tests → material response in compression → parallel to rolling direction First test → strain gauge → angle legs centroid

- Second test \rightarrow two strain gauges \rightarrow each leg
- Test layout

Experimental Investigation Stress versus strain curves

 Material Tests → local buckling mode → less coupon tests typical tensile rupture load → strain values higher than ultimate test load → not valid (0.005 strain) → tests validity range

Tests Summary

Test Specimen	E (GPa)	S _{0.2} (MPa)	
Test 1-S1	243.8	343	
Test 1-S2	219.4	352	
Test 2-S1	204.8	351	
Test 2-S2	189.2	335	
Test 2-S3	208.7	352	
Test 2-S4	200.5	353	
Average	211.0	348	

 Additional analysis & CSM ultimate stress assuming → 713 MPa tensile rupture stress → tensile coupon → 45% ultimate strain

- Main Tests Instrumentation
- LVDTs layout \rightarrow varied \rightarrow LVDTs layout

• Rosettes (Rectangular 45°) \rightarrow middle \rightarrow angles legs

• Top loading plate rotation assessment LVDT \rightarrow possible \rightarrow top loading plate rotation

Load versus axial displacement curves.

Tests failure modes: Local buckling or flexural buckling

Tests	Ultimate Load (kN)	Buckling Mode
Characterization 1	283.6	Local
Characterization 2	287.4	Local
L64x64x6.4-AUS-500-1-23.09	239.0	Local
L64x64x6.4-AUS-500-2-23.09	272.4	Local
L64x64x6.4-AUS-750-1-27.09	248.8	Local
L64x64x6.4-AUS-750-2-28.09	241.7	Local
L64x64x6.4-AUS-1000-1-25.08	209.7	Flexural
L64x64x6.4-AUS-1000-2-01.09	197.3	Flexural
L64x64x6.4-AUS-1000-3-19.09	234.8	Flexural
L64x64x6.4-AUS-1250-1-05.10	205.4	Flexural
L64x64x6.4-AUS-1250-2-07.10	212.1	Flexural
L64x64x6.4-AUS-1500-1-13.10	172.8	Flexural
L64x64x6.4-AUS-1500-2-13.10	170.9	Flexural

• Flexural torsional buckling modes \rightarrow not observed

Experimental Investigation 500mm deformed shape \rightarrow typical local buckling

Experimental Investigation 1500mm deformed shape \rightarrow typical flexural buckling

Experimental Investigation Deformed tested columns overview

Design Procedures Comparison

	<u>9</u>	L64x64x6,35					
		Length (mm)					
		250	500	750	1.000	1.250	1.500
	Mean tests values	285.5	255.7	245.3	213.9	208.8	171.9
	N _{Cr,u}	62,102.3	15,525.6	6,900.3	3,881.4	2,484.1	1,725.1
	NCr,v	15,911.3	3,977.8	1,767.9	994.5	636.5	442.0
Γ	N _{Cr,T}	653.1	653.1	653.1	653.1	653.1	653.1
Load (kN)	$N_{Cr,FT}$	650.5	642.8	629.7	610.8	586.0	555.4
	$N_{Cr,LB}$	618.7					
	$N_{\text{Rd},\mu}-EC3$	319.2	308.0	297.6	287.6	277.7	267.7
	$N_{\text{Rd},v}\!-\!EC3$	266.6	266.6	266.6	247.7	224.7	199.7
	$N_{Rd,T}-EC3$	217.8	217.8	217.8	217.8	217.8	217.8
	$N_{Rd,FT}-EC3$	217.7	217.1	216.2	214.7	212.7	210.0
	$N_{\text{Rd},\text{u}}-CSM$	423.30	406.40	390.70	375.40	360.00	344.20
	$N_{\text{Rd},v} - CSM$	406.80	376.20	345.50	311.70	274.00	234.50
Γ	$N_{Rd,T} - CSM$	270.90	270.90	270.90	270.90	270.90	270.90
	$N_{\text{Rd},\text{FT}}\!-\!\text{CSM}$	270.60	269.70	268.00	265.60	262.20	257.60
	Eurocode 3 Mean values	0.76	0.85	0.88	1.00	1.02	1.16
	CSM Mean values	0.95	1.05	1.09	1.24	1.26	1.36

Eurocode → conservative → length ≤750 mm
 → unsafe → length ≥1250 mm.

• CSM \rightarrow overestimate $\rightarrow \geq 500$ mm

Design Procedures Comparison

• Eurocode failure modes \rightarrow not match \rightarrow experimental modes $\rightarrow \alpha \& \lambda_0 \rightarrow$ not associated \rightarrow rolled angle sections \rightarrow need \rightarrow more accurate values

	L64x64x6.35						
	Length (mm)						
	250	500	750	1.000	1.250	1.500	
Theoretical	Local	Local	Local	Flexural	Flexural	Flexural	
Tests	Local	Local	Local	Flexural	Flexural	Flexural	
Eurocode 3	Flexural Torsional	Flexural Torsional	Flexural Torsional	Flexural Torsional	Flexural Torsional	Flexural	

 Theoretical buckling modes → smaller critical loads
 CSM stress → f_{csm} → 464 MPa → 1.33 fy Eurocode 3 → CSM → used without any restrictions → elements cross sections slenderness

Design Procedures Comparison

- Comparison → ultimate column stress & Austenitic yield stress → tests, Eurocode 3 & CSM
- Eurocode 3 & CSM design curves \rightarrow controlling buckling phenomenon \rightarrow minor axis slenderness

Final considerations

- Structural behaviour austenitic stainless steel rolled angle columns
- 11 L64x64x6.35 tests \rightarrow ASTMA276 304 \rightarrow heights \rightarrow 250 to 1500mm
- 2 → material characterization
- Tests → compared → Eurocode 3 1-4
 & Continuous Strenght Method CSM

Final considerations

• Failure modes:

- -Local buckling \rightarrow lengths \leq 750 mm
- -Global flexural buckling \rightarrow other lengths
- -Flexural torsional buckling mode \rightarrow not associated \rightarrow tested columns

 Top plate hinge → not interfere → results → up to tests ultimate loads → confirmed → LVTS → acquire rotations

Final considerations • Tests \rightarrow columns \rightarrow normalized slenderness \rightarrow less than 0.65 \rightarrow Eurocode 3 \rightarrow conservative designs \rightarrow for more than $0.65 \rightarrow \text{overestimates}$ \rightarrow column load carrying capacity • Eurocode 3 Failure modes \rightarrow not match \rightarrow the experiments

Final considerations • Important to observe $\rightarrow \alpha \& \lambda_0 \rightarrow \text{not}$ associated \rightarrow rolled angle sections \rightarrow need \rightarrow more accurate values

 CSM → overestimate → column ultimate loads → length ≥ 500 mm

Acknowledgments

- Authors acknowledge the financial support granted to this research program by the Brazilian National & State Science Support Agencies:
 - CNPq
 - Capes
 - FAPERJ

a) EXP300

a)EXP1000

AN INVESTIGATION OF AUSTENITIC STAINLESS STEEL HOT ROLLED ANGLE SECTIONS UNDER AXIAL COMPRESSION

Arthur A. de Menezes - Civil Eng. Graduate Program – UERJ, Brasil <u>Pedro C. G. da S. Vellasco</u> – UERJ, Brasil Luciano R. O. de Lima – UERJ, Brasil André T. da Silva – UERJ, Brasil

