DESIGN OF FLAT OVAL LDSS STUB COLUMNS OF SLENDER CROSS-SECTIONS

ਸ਼ਾਂਟ੍ਰਾਵ Khwairakpam Sachidananda and Konjengbam Darunkumar Singh

Indian Institute of Technology Guwahati, India

Fifth International Structural Stainless Steel Experts Seminar (18-19 September 2017, London)

Contents:

- 1. Introduction
- 2. Objectives
- 3. Results and discussion
- 4. Conclusions

Introduction: Flat oval hollow steel sections

Introduction: Flat oval steel hollow sections

Introduction: Lean Duplex Stainless Steel (LDSS) ~ constructions

LDSS ~ Less expensive (due to low nickel content), good corrosion resistance, high temperature properties, adequate weldability and fracture toughness (e.g. Theofanous and Gardner, Saliba & Gardner, 2013).

Introduction: Lean Duplex Stainless Steel (LDSS) ~ Material properties

METALCOR

1.4162					
Trade name	LDX 2101®, Lean Du	plex			
Standards	Material No. 1.4162	EN Designation X2CrMnNiN22-5	n UNS -2 S32101		
Description	1.4162 is a LEAN-DUP	PLEX chromium stainless	steel with additional mar	ganese, nickel, molybdo	enum and copper.
Special properties	Very good corrosion r	esistance. Good mechani	cal characteristics. Good	endurance strength. Go	ood weldability.
Chemical Composition	C %	Si ≤ %	Mn ≤ %	P ≤ %	S ≤ %
	≤ 0.04	1.00	4.00-6.00	0.04	0.015
	Cr %	Mo %	Ni %	N %	Cu %
	21.0-22.0	0.10 <mark>-</mark> 0.80	1.35-1.70	0.20-0.25	0.10-0.80
Mechanical Properties 20°C	Hardness HB 30 ≤ HB	0.2% Yield strength R _e ≥ N/mm ²	Tensile strength R _m N/mm ²	Elongation A₂ ≥ %	Modulus of elasticity kN/mm ²
	290	450	> 650	30	200
Physical Properties 20°C	Density g/cm³	Specific heat capacity J/kg K	Thermal conductivity W/m K	Electrical resistivity Ω mm²/m	
	7.7	500	15	0.8	
Suitable welding filler materials	CN 24/9 LDX PW-FD				
Application	Chemical, pulp and ce	ellulose industry, oil and g	as industry		
Available forms for 1.4162 /	Sheets/Plates	Bars Tubes/Pipe	s Fittings		
			କ୍ତ୍ର କ୍ତ୍ରିର ନ୍ତ୍ରିକ p:/		

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1993-1-4:2006+A1

June 2015

		Product form							
Type of stainless Grade steel		Cold rolled strip		Hot rolled strip		Hot rolled plate		Bars, rods and sections	
	Nominal thickness t								
		$t \le 8 \text{ mm}$		$t \le 13,5 \text{ mm}$		$t \le 75 \text{ mm}$		$t \le 250 \text{ mm}$	
		fy	$f_{\rm u}$	fy	$f_{\rm u}$	f_{y}	$f_{\rm u}$	fy	$f_{\rm u}$
		N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
	1.4547	320	650	300	650	300	650	300	650
	1.4318	350	650	330	650	330	630	-	-
	1.4062	530 e	700 e	480 f	680 ^f	450 g	650 g	380 b	650 ^b
	1.4162	530 e	700 e	480 ^f	680 ^f	450	650	450 ^b	650 ^b
Austenit ic- ferritic steels	1.4482	500 e	700 e	480 f	660 f	450	650	400 b	650 b
	1.4662	550 e	750 e	550	750	480	680	450 ^b	650 ^b
	1.4362	450	650	400	650	400	630	400 b	600 b
	1.4462	500	700	460	700	460	640	450 ^b	650 ^b

^a The nominal values of f_y and f_u given in this table may be used in design without taking special account of anisotropy or strain hardening effects.

^b $t \le 160 \text{ mm}$

c $t \le 25 \text{ mm}$

d $t \le 100 \text{ mm}$

• $t \le 6,4 \text{ mm}$

f $t \le 10 \text{ mm}$

^g $t \le 50 \text{ mm} (f_y = 430 \text{ N/mm}^2 \text{ and } f_u = 625 \text{ N/mm}^2 \text{ for } 50 \text{ mm} < t \le 75 \text{ mm})$

Introduction: Flat oval section ~ Effective area

Zhu and Young, (2011, 2012)

Curve element: Full effective

ASDM (2002)

Curved element: **Partially** effective

No guideline to compute effective area for composite curved and flat sections in codes e.g. EN, ASCE, AS/NZS

Introduction: Flat element effective area / length ~ ASDM

Flat element effective length

$$\lambda = \left(\frac{1.052}{\sqrt{k}}\right) \left(\frac{l_f}{t}\right) \left(\sqrt{\frac{f}{E}}\right) \qquad \qquad f = f_{yrs} = \left(1 - 0.2\sqrt{\frac{l_f}{t}}\sqrt{\frac{f_y}{E}}\right) f_y$$

For $f_y > 552$ MPa, a reduced yield strength (f_{yrs}) is substituted for limiting value of f (*i.e.* $f = f_{yrs}$, for $f_y = 657$ MPa, for LDSS)

The value of *k* is conservatively taken as 4.0

For
$$\lambda \le 0.673$$
, $l_{ef} = l_f$
For $\lambda > 0.673$, $l_{of} = \rho l_f$, $\rho = \frac{\left(1 - \frac{0.22}{\lambda}\right)}{\lambda} \le 1.0$

August 2002

American Iron and Steel Institute & Auto/Steel Partnership 2000 Town Center • Suite 320 • Southfield, Michigan 48075-1123 Tel: (248) 945-4779 • Fax: (248) 356-8511

Introduction: Curved element effective area / length ~ ASDM

Curved element effective length (l_{ec}) lof 2 $l_{ec}/2$ $l_{ec} = ts \left| 1.486 - \frac{0.486S}{\frac{l_c}{f_v}} \right| \qquad s = 1.28 \sqrt{\frac{E}{f_v}}$ l_{ic} w or D $t_e = \left(\frac{A_o}{A}\right) \left(\frac{f_y}{f}\right) t$ l_{if} Automotive Steel Design Manual $\frac{D}{t} \le 0.114 \frac{E}{f_{y}}$ $A_o = A$; <u>A/S</u> P merican Iron Revision 6.1 $= \left(\frac{2}{3} + \frac{0.038 \frac{E}{f_y}}{\frac{D}{t}}\right) A \qquad 0.114 \frac{E}{f_y} < \frac{D}{t} \le 0.448 \frac{E}{f_y} \qquad \boxed{\begin{array}{c} D/t \le 34.22 \text{ for} \\ E = 197200 \text{ N/mm}^2 \\ f_y = 657 \text{ N/mm}^2. \end{array}}$ August 2002 $= \left(\frac{0.336\frac{E}{F_{y}}}{\underline{D}}\right)A \qquad \qquad \frac{D}{t} \ge 0.448\frac{E}{F_{y}}$

 $P_{ASDM} = f_{y}A_{e}$ $A_{ec} = 2(l_{c}-l_{ec})t_{e} + 2tl_{ec}$ $A_{ef} = 2tl_{ef}$ $A_{e} = A_{ec} + A_{ef}$ $\frac{D}{t} \text{ or } \frac{W}{t} \ge 40$ Slender Curved element

Objectives: Flat oval hollow LDSS stub columns

Lean Duplex Stainless Steel Flat Oval Hollow Stub Columns Slender Cross-Sections Compression Design

Objectives

To investigate the structural behaviour of fixed ended LDSS flat oval hollow stub columns of *slender* cross-sections, by varying I_f (flat element length), r (radius of curved element), and t (thickness).

> To assess the applicability of current standards/codes for the design of LDSS flat oval hollow stub columns of *slender* cross-sections.

FE Modelling: Geometry, mesh, boundary conditions, loading...

FE Modelling: Validation ~ LDSS Square hollow stub columns

LDSS square hollow stub column (Theofanous and Gardner, 2010)

					Compound R-O	
Cross-section	E (MPa)	$\sigma_{0.2}$ ((MPa)	$\sigma_{1.0}$ (MPa)	coefficients	
					n	n' _{0.2,1.0}
80x80x4	197200	657		770	4.7	2.6
60x60x3	206400	711		845	5.0	2.7
Specimen	<i>L</i> (mm)	<i>B</i> (mm)	<i>h</i> (mm)	<i>t</i> (mm)		r_i (mm)
80x80x4-SC1	319.7	80	80.5	3.88		3.8
80x80x4-SC2	332.2	80	80	3.81		3.6
60x60x3-SC1	239.8	60	60	3.09		2.3
60x60x3-SC2	240.0	60	60	3.17		2.1

L = Length, B = Width, h = height, t = thickness, $r_i =$ internal corner radius

FE Modelling: FE Validation ~ Square beam, Plate girder

LDSS square hollow stub column (Theofanous and Gardner, 2010)

* Good agreement with experimental results

Results: Deformed shapes ~ *I_f* = 300 mm; *r* = 300 mm, *t* = 3 mm

Results: Effect of curved element radius (r) ~ Deformed shapes (I_f = 300 mm, t = 3 mm)

Results: Effect of flat element length (I_f) ~ Deformed shapes (r = 150 mm, t = 3 mm)

Results: Effect of curved element radius (r) ~ I_f = 300 mm

Results: Codal comparison ~ r = 150, 750 mm, I_f = 300 mm

Results: Effect of flat element length (*I_f***)** ~ *r* = 150 mm

Results: Codal comparison ~ I_f = 500 and 600 mm, r = 150 mm

Results: Comparison with codes

Specimen

Current codes

P_{FEA}	$P_{\scriptscriptstyle FEA}$	P_{FEA}	P_{FEA}
P_{EN}	PASINZS	$P_{\rm ASCE}$	P_{ASDM}

l300w300r150t3	0.70	0.68	0.68	0.79	
l300w300r150t4	0.77	0.74	0.74	0.82	
l300w300r150t5	0.91	0.87	0.87	0.94	
l300w300r150t7.5	1.01	0.97	0.97	0.98	
l300w300r300t3	0.84	0.80	0.80	0.93	
l300w300r300t4	0.96	0.91	0.91	1.01	
l300w300r300t5	1.04	0.98	0.98	1.06	
l300w300r300t7.5	1.12	1.06	1.06	1.09	
l300w300r450t3	0.69	0.66	0.66	0.77	
l300w300r450t4	0.85	0.81	0.81	0.91	
l300w300r450t5	1.00	0.94	0.94	1.03	
l300w300r450t7.5	1.09	1.02	1.02	1.06	
l300w300r600t5	0.96	0.91	0.91	0.99	
l300w300r600t7.5	1.04	0.98	0.98	1.02	
l300w300r750t3	0.52	0.50	0.50	0.59	
l300w300r750t4	0.64	0.61	0.61	0.69	
l300w300r750t5	0.74	0.69	0.69	0.84	
l300w300r750t7.5	1.00	0.94	0.94	0.98	
l400w300r150t3	0.70	0.69	0.69	1.05	
l400w300r150t4	0.78	0.75	0.75	1.08	
l400w300r150t5	0.84	0.80	0.80	1.12	
l400w300r150t7.5	1.11	1.05	1.05	1.35	
l500w300r150t3	0.72	0.69	0.69	0.80	
l500w300r150t4	0.80	0.77	0.77	0.84	
l500w300r150t5	0.85	0.81	0.81	0.86	
l500w300r150t7.5	0.92	0.86	0.86	0.87	
l600w300r150t3	0.73	0.70	0.70	0.80	
l600w300r150t4	0.80	0.77	0.77	0.84	
l600w300r150t5	0.97	0.91	0.91	0.97	
l600w300r150t7.5	1.07	1.00	1.00	1.00	
l700w300r150t4	0.91	0.87	0.87	0.95	
l700w300r150t5	1.00	0.94	0.94	1.00	
l700w300r150t7.5	1.11	1.02	1.02	1.04	
Mean (P _m)	0.88	0.84	0.84	0.94	
$\operatorname{COV}(V_p)$	0.18	0.17	0.17	0.15	
Reliability index (β)	1.44	1.50	1.67	2.14	

Results: Proposed effective width for curved element ~ TRF

Results: Comparison with proposed modified codes

	P_{FEA}	P_{FEA}	P_{FEA}	P_{FEA}
	$P_{EN(p)}$	$p_{AS/NZS(p)}$	$P_{ASCE(p)}$	$P_{ASDM(p)}$
1300w300r150t3	1.21	1.13	1.13	1.13
1300w300r150t4	1.20	1.11	1.11	1.11
1300w300r150t5	1.32	1.22	1.22	1.22
l300w300r150t7.5	1.26	1.18	1.18	1.18
1300w300r300t3	1.18	1.09	1.09	1.18
l300w300r300t4	1.25	1.15	1.15	1.21
1300w300r300t5	1.37	1.25	1.25	1.22
l300w300r300t7.5	1.29	1.19	1.19	1.17
1300w300r450t3	0.96	0.89	0.89	0.96
l300w300r450t4	1.11	1.02	1.02	1.07
1300w300r450t5	1.23	1.13	1.13	1.16
1300w300r450t7.5	1.24	1.15	1.15	1.12
1300w300r600t5	1.18	1.08	1.08	1.12
1300w300r600t7.5	1.16	1.07	1.07	1.08
1300w300r750t3	0.72	0.67	0.67	0.72
1300w300r750t4	0.83	0.76	0.76	0.80
1300w300r750t5	0.99	0.91	0.91	0.94
1300w300r750t7.5	1.11	1.03	1.03	1.03
l400w300r150t3	1.21	1.12	1.12	1.12
l400w300r150t4	1.21	1.11	1.11	1.11
l400w300r150t5	1.21	1.11	1.11	1.11
l400w300r150t7.5	1.38	1.27	1.27	1.27
l500w300r150t3	1.24	1.14	1.14	1.14
l500w300r150t4	1.25	1.14	1.14	1.14
l500w300r150t5	1.22	1.12	1.12	1.12
l500w300r150t7.5	1.14	1.05	1.05	1.05
l600w300r150t3	1.25	1.15	1.15	1.15
l600w300r150t4	1.25	1.14	1.14	1.14
l600w300r150t5	1.39	1.26	1.26	1.26
l600w300r150t7.5	1.33	1.21	1.21	1.21
l700w300r150t4	1.42	1.29	1.29	1.29
l700w300r150t5	1.43	1.30	1.30	1.30
l700w300r150t7.5	1.38	1.25	1.25	1.25
Mean (P_m)	1.21	1.11	1.11	1.12
$\operatorname{COV}(V_p)$	0.13	0.13	0.13	0.11
Reliability index (β)	2.77	2.66	2.84	2.98

_

Proposed modified codes

 $\beta > 2.5$: Reliable

Parametric study of the structural behaviour of fixed ended LDSS flat oval section stub columns of slender cross-sections, by varying I_f (flat element length), r (radius of curved element), t (thickness), is presented. Based on the study, the following conclusions have been obtained:

□ LDSS flat oval sections with semicircular elements on either sides of the flat elements (i.e. r/w = 0.5) provided the maximum column strength (P_u), with increasing P_u for increasing I_t/w .

□ EN 1993-1-4, AS/NZS 4673, ASCE 8-02, and ASDM design rules are unconservative for the design of non-compact LDSS flat oval stub column sections.

□ An expression has been proposed for calculating the effective thickness of curve elements of flat oval LDSS sections with $w/t \ge 40$, which can provide reliable load capacity predictions when used with EN 1993-1-4 (2015), AS/NZS 4673 (2001), ASCE 8-02 (2002) and ASDM (2002) equations.

Thank you very much for your patience

