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Abstract 

The fracture and local buckling behaviour of stainless steel circular hollow sections (CHS) under combined tension and 

bending moment is investigated, based on numerical modelling. A total of 750 numerical models with various cross-

section diameters and thicknesses and loading eccentricities were developed. The numerical results were carefully 

analysed and compared with the resistance predictions determined from the existing international design standards, 

indicating undue conservatism. The continuous strength method, which rationally considers strain hardening in the 

calculation of cross-section resistances, is extended to cover the design of stainless steel CHS under eccentric tension, 

and shown to yield accurate resistance predictions. 
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1 Introduction 

Structural stainless steel possesses better aesthetic appeal, more favourable material properties and higher corrosion and 

fire resistances over the conventional carbon steel, and thus has been increasingly used in civil and offshore engineering. 

For the design of stainless steel structures, the existing design standards were generally developed by mirroring the 

corresponding carbon steel design provisions without accounting for the distinctive nonlinear stress–strain response and 

strain hardening behaviour of stainless steel, and therefore resulted in inaccurate design. In order to overcome these 

drawbacks, in-depth experimental and numerical studies into the mechanical behaviour of stainless steel materials and 

members have been conducted, and more accurate and efficient design rules have been developed. As part of a wider 

study that is currently being carried out by the authors to investigate the structural performance of stainless steel cross-

sections and members subjected to combined loading, this paper focuses on the numerical modelling and design of 

stainless steel circular hollow sections (CHS) under combined tension and bending moment. Previous relevant studies are 

briefly reviewed herein. Zhao et al.[1–3] and Arrayago and Real[4] conducted a series of eccentrically loaded stub column 

tests on stainless steel CHS and square and rectangular hollow sections (SHS and RHS), to investigate their local buckling 

behaviour under combined actions of axial compression and bending moment. Comparisons of the combined loading test 

results against the codified resistance predictions generally indicated a high level of conservatism in the current stainless 

steel design standards, which mainly stemmed from the neglect of strain hardening. Improved deign approaches were 

then developed by Zhao et al.[2,5,6], based on the deformation-based continuous strength method (CSM)[7–10], which 

account for strain hardening in the determination of cross-section resistances and are shown to yield substantially more 

accurate design resistance predictions. A series of experimental and numerical studies have been carried out on stainless 

steel CHS[11] and SHS and RHS[12–14] beam-columns, in order to investigate their global stability under combined 

compression and uniform (first order) bending moment. Stainless steel SHS and RHS beam-column tests under moment 

gradients were conducted by Zhao et al.[15] to study their interaction buckling behaviour under combined axial 

compressive load and non-uniform (first-order) bending moment. The obtained test and numerical results generally 

revealed that the existing codified beam-column interaction curves led to scattered strength predictions, which principally 

resulted from the inaccurate end points and shape of the design curves. Revised stainless steel beam-column design 

interaction formulae have been proposed by Greiner and Kettler[16] and Zhao et al.[17]. 

The present study focuses on the numerical modelling and design of stainless steel CHS subjected to combined actions 

of axial tension and bending moment. Finite element (FE) simulations of both the local buckling behaviour and tensile 

fracture of stainless steel CHS under eccentric tension are firstly described. The developed FE models were validated 

against the previous eccentric tension tests on CHS, and then employed to conduct parametric studies to generate 

structural performance data over a broad range of stainless steel grades, cross-section geometries and loading 

combinations. The numerically derived results were utilised to assess the accuracy of the existing design rules for stainless 

steel CHS under combined tension and bending moment, given in the European code EN 1993-1-4[18], American 

specification SEI/ASCE-8[19] and Australian/New Zealand standard AS/NZS 4673[20]. Improved design approaches were 

also proposed through extending the deformation-based continuous strength method to the case of combined loading 

(tension and bending moment). The accuracy and reliability of the new design proposal were then assessed against 750 

numerical results. 
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2 Numerical Modelling 

2.1 General 

A numerical modelling programme was carried out by means of the finite element analysis package ABAQUS[21], to 

simulate the previous eccentric tension tests on CHS, and to conduct parametric studies to generate structural performance 

data over a broad range of stainless steel grades, cross-section geometries and loading combinations. The detailed 

numerical modelling of the material behaviour, boundary conditions and initial local geometric imperfections was 

described in the following sub-sections. 

2.2 Material modelling 

The two-stage Ramberg–Osgood material model[22–25], which is an extension of the basic Ramberg–Osgood 

formulation[22,23], with developments by Mirambell and Real[24] and Rasmussen[25], was adopted to represent the 

engineering stress–strain responses derived from tensile coupon tests, as given by Eq. (1), where ε and σ are the nominal 

strain and stress, respectively, σ0.2 is the 0.2% proof stress, σu is the ultimate stress, ε0.2 is the total strain corresponding to 

the 0.2% proof stress, E is the initial Young’s modulus, E0.2 is the tangent modulus at the 0.2% proof stress point (ε0.2, 

σ0.2), and n and m are the strain hardening exponents characterising the degree of nonlinearity of the stress–strain curve 

below and beyond the 0.2% proof stress. Previous experimental studies[26, 27] indicated that the two-stage Ramberg–

Osgood material model yields an excellent representation of the full nominal (engineering) stress–strain curves up to the 

ultimate stress σu. Since ABAQUS requires the material properties to be specified in the form of true stress and true plastic 

strain, the engineering stress–strain curves, represented by Eq. (1), were converted into the true stress–true plastic strain 

curves, according to Eqs (2) and (3), in which σtrue is the true stress, 
pl

ln  is the logarithmic plastic strain, and σnom and εnom 

are the nominal (engineering) stress and strain, respectively. Note that the true stress–true plastic strain curve, converted 

from the two-stage Ramberg–Osgood material model, was used up to the true ultimate stress σu,true. 

𝜀 =
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𝐸
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)
𝑛
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𝑚
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 (1) 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑛𝑜𝑚(1 + 𝜀𝑛𝑜𝑚) (2) 

𝜀𝑙𝑛
𝑝𝑙
= 𝑙𝑛(1 + 𝜀𝑛𝑜𝑚) −

𝜎𝑡𝑟𝑢𝑒
𝐸

 (3) 

With regards to the numerical modelling of structural members susceptible to local buckling and global instability, a true 

stress–true plastic strain curve up to the true ultimate stress is appropriate for this purpose, while for the numerical 

simulation of structural members failing by tensile fracture, a true stress–true plastic strain curve beyond the true ultimate 

stress until fracture is also required, in order to fully capture the fracture behaviour. Note that in the material tensile 

coupon tests, necking generally starts at the engineering ultimate stress point[28, 29], and then deformations become 

localised. The elongations of the tensile coupons are measured using extensometers, which can only record the average 

elongation over the gauge length rather than the localised elongation in the necked region. Therefore, the measured 

engineering stress–strain curve beyond the ultimate stress until fracture does not represent the actual material response, 

and cannot be directly used and converted into the true stress–true plastic strain curve for inputting into ABAQUS. The 

well-established power law expression for ductile metallic materials[28] was used herein to determine the true stress–true 

plastic strain curve beyond the true ultimate stress until fracture, as given by Eq. (4), where σfrac,true is the true fracture 

stress, K is strength constant and p is the strain hardening parameter. The values of K and p were obtained through a 

(linear) regression fit of Eq. (4) to the logarithmic values of the true stresses (up to true ultimate stress) and the 

corresponding true plastic strains; the slope and the vertical intercept of the linear regression line were taken as the values 

of K and p, respectively. Upon determination of the strength constant K and the strain hardening parameter p, the true 

stress–true plastic strain curve beyond the true ultimate stress until fracture can be derived.  

𝜎𝑡𝑟𝑢𝑒 = 𝐾(𝜀𝑡𝑟𝑢𝑒
𝑝𝑙

)
𝑝
        for 𝜎𝑢,𝑡𝑟𝑢𝑒 < 𝜎𝑡𝑟𝑢𝑒 ≤ 𝜎𝑓𝑟𝑎𝑐,𝑡𝑟𝑢𝑒 (4) 

Previous tensile coupon tests on structural carbon steel and stainless steel indicated that the true fracture strains range 

from 80% to 120%. An average value of 100% was recommended by Salih et al.[30] as the fracture strain point in the 

material modelling, which is also adopted herein. In summary, the true stress–true plastic strain curve up to the true 

ultimate stress was converted from the two-stage Ramberg–Osgood material model[22–25], while the power law 

expression[28], as defined by Eq. (4), was used to derive the true stress–true plastic strain curve beyond the true ultimate 

stress until the fracture strain of 100%. 
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2.3 Basic modelling assumptions 

The four-noded doubly curved shell element with reduced integration, S4R, was employed to simulate the structural 

performance of stainless steel thin-walled circular hollow sections under eccentric tension. A uniform mesh size equal to 

the material thickness was assigned to the FE models along both the longitudinal and circumferential directions. Since 

the numerical models were symmetric with respect to the mid-height plane and the plane perpendicular to the buckling 

axis, only half of the member length and cross-section was modelled, in order to reduce computational time. The end 

section of the FE model was coupled to an eccentric reference point, allowing longitudinal translation as well as rotation 

about the buckling axis, in order to simulate the pin-ended boundary conditions. An axial tensile load was then applied to 

the numerical models through the eccentric reference point, resulting in the combined actions of axial tensile force and 

bending moment to the members. The incorporated initial local geometric imperfection pattern was assumed to be of the 

lowest elastic local buckling mode shape under pure compression, with the imperfection amplitude equal to 1/100 of the 

material thickness[6]. Finally, static Riks analysis, accounting for both material and geometric nonlinearity, was conducted 

to simulate the full load–deformation histories of CHS under combined tension and bending moment. 

2.4 Validation of numerical models 

There have been no experimental investigations into the structural performance of stainless steel CHS subjected to 

combined actions of tension and bending moment. Therefore, the developed finite element models were validated against 

the corresponding eccentric tension tests on carbon steel CHS, as reported in Li et al.[31]. The only difference between the 

numerical simulations of stainless steel and carbon steel CHS subjected to eccentric tension lies in the material modelling 

prior to the true (or engineering) ultimate stress. While the two-stage Ramberg–Osgood material model was used for 

stainless steel, a multi-linear material model[31] was adopted to represent the measured carbon steel material stress–strain 

response up to the ultimate stress, which was then converted into the true stress–true plastic strain curve for inputting into 

ABAQUS.  

Comparisons between the experimental and numerical load–deformation histories are shown in Fig. 1, indicating that the 

initial stiffness and the general shape of the experimental load–end elongation curves are fully captured by the numerical 

modelling. Therefore, the developed finite element models are capable of simulating the experimental responses of carbon 

steel CHS stub columns subjected to eccentric tension, and are thus considered to be validated. 

2.5 Parametric studies 

Parametric studies were then performed, using the validated FE models, to generate structural performance data on 

stainless steel CHS subjected to eccentric tension. In the present parametric studies, the (engineering) material properties 

were taken from the previous eccentric compression tests on stainless steel CHS, SHS and RHS, as shown in Table 1, and 

the incorporated initial local geometric imperfection pattern was assumed to be of the lowest elastic local buckling mode 

shape under pure compression, with the imperfection amplitude equal to 1/100 of the material thickness[6]. Regarding the 

geometric properties of the modelled CHS, the outer diameter D was set equal to 150 mm, while the cross-section 

thicknesses t were varied between 3 mm and 16 mm. The resulting modelled CHS covered Class 1–3 (non-slender) cross-

sections, according to the slenderness limits in EN 1993-1-4[18]. The model length was equal to three times the outer cross-

section diameter. The initial loading eccentricities e0 were varied between 5 mm and 500 mm, leading to a broad range 

of loading combinations to be considered. For CHS stub columns loaded at large eccentricities, where the bending effect 

is dominant, the overall failure is governed by local buckling under bending, and a sharply defined ultimate load can be 

obtained, while for CHS stub columns loaded at relatively small eccentricities, the overall failure is due to tensile fracture 

and no peak load is evident. Previous numerical studies on carbon steel and stainless steel bolted connections composed 

of flat sheets[30] suggested that the ultimate load is said to be reached when the equivalent plastic strain at any point of the 

numerical model reaches the true fracture strain of 100%. However, in the numerical simulations of CHS stub columns 

under combined tension and bending, it was generally found that the FE models underwent significant deformation and 

the cross-section shapes became increasingly oval after the maximum equivalent plastic strain reaches the true plastic 

strain of 40%. Therefore, the ultimate load was conservatively taken as the load corresponding to a maximum equivalent 

plastic strain of 40%. In total, 750 parametric study results were generated, with 250 for each of the three considered 

(austenitic, duplex and ferritic) stainless steel grades. 

3 Assessment of Current Design Standards and Development of New Design Approaches 

3.1 General 

In this section, the existing design rules for stainless steel CHS under combined tension and bending moment, given in 

the European code EN 1993-1-4[18], American specification SEI/ASCE-8[19] and Australian/New Zealand standard 

AS/NZS 4673[20], are discussed and evaluated. The deformation-based continuous strength method[6–10] has been recently 

extended to cover the design of stainless steel CHS under combined compression and bending moment, and its 

applicability to the design of stainless steel CHS subjected to eccentric tension is also assessed herein. Table 2 reports the 

mean ratios of the numerical failure loads to the (unfactored) predicted failure loads Nu/Nu,pred determined from each 

design method. A value of Nu/Nu,pred ratio greater than unity indicates safe-sided resistance prediction. 
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3.2 European code EN 1993-1-4 (EC3) 

The current European code EN 1993-1-4[18] employs nonlinear and linear interaction formulae for the design of Class 1 

(or 2) and Class 3 stainless steel CHS subjected to combined tension and bending moment, as given by Eqs (5) and (6), 

respectively, where NEd is the design (applied) axial tensile load, MEd=NEde0 is the design (applied) bending moment, NRd 

is the cross-sectional tension resistance, and equal to the yield load, defined as the product of the gross section area A and 

the 0.2% proof stress σ0.2, and MRd is the cross-sectional bending moment resistance, and taken as the plastic (Mpl=Wplσ0.2) 

and elastic (Mel=Welσ0.2) moment capacities for Class 1 (or 2) and Class 3 CHS, respectively, in which Wpl and Wel are the 

plastic and elastic section moduli, respectively, n is the ratio of the design axial tensile load to the cross-section yield load 

and MR,pl is the reduced plastic moment resistance to make allowance for the effect of the applied axial tensile load. 

𝑀𝑅,𝑝𝑙 = 𝑀𝑝𝑙(1 − 𝑛
1.7) ≤ 𝑀𝑝𝑙 (5) 

𝑁𝐸𝑑
𝑁𝑅𝑑

+
𝑀𝐸𝑑

𝑀𝑅𝑑

≤ 1 (6) 

The numerical results for austenitic, duplex and ferritic stainless steel CHS subjected to eccentric tension are normalised 

by the respective cross-section yield loads and plastic moment resistances, and plotted against the average EC3 linear and 

nonlinear design interaction curves in Figs 2(a)–2(c), respectively. The comparison results generally indicate an unduly 

higher level of scatter and conservatism of the EC3 resistance predictions for stainless steel CHS subjected to combined 

axial tension and bending moment. A quantitative evaluation of the EC3 resistance predictions is presented in Table 2, 

showing that the mean ratios of Nu/Nu,EC3 are equal to 1.47, 1.35 and 1.16, with the corresponding coefficient of variations 

(COVs) of 0.10, 0.12 and 0.12 for austenitic, duplex and ferritic stainless steel CHS subjected to eccentric tension, 

respectively. The conservatism and scatter of the EC3 predicted resistances result mainly from the inaccurate predictions 

of the tension and bending moment end points (i.e. cross-section resistances under pure tension and pure bending) of the 

design interaction curves, which are calculated without accounting for strain hardening, and thus limited to the cross-

section yield loads and elastic (or plastic) moment resistances. 

3.3 American specification SEI/ASCE-8 

For the design of stainless steel CHS subjected to combined actions of axial compressive (or tensile) load and bending 

moment, the current American specification SEI/ASCE-8[19] employs a linear deign interaction curve, as defined by Eq. 

(7), where Nn and Mn are the cross-sectional resistances under tension and bending, respectively. The cross-sectional 

tension resistance Nn is equal to the yield load, while the bending moment resistance Mn, depending on the cross-section 

slenderness (diameter-to-thickness ratio D/t), is calculated from Eq. (8); for stocky CHS with D/t ratios less than 

0.112E/σ0.2, Mn is taken as the elastic moment resistance (Mel) without considering the beneficial plasticity, while for 

slender CHS with D/t ratios greater than or equal to 0.112E/σ0.2, a reduced elastic moment resistance (KcMel) is adopted. 

𝑁𝐸𝑑
𝑁𝑛

+
𝑀𝐸𝑑

𝑀𝑛

≤ 1 (7) 

𝑀𝑛 =

{
 

 𝑀𝑒𝑙 for 
𝐷

𝑡
≤
0.112𝐸

𝜎0.2

𝐾𝑐𝑀𝑒𝑙 for 
0.112𝐸

𝜎0.2
<
𝐷

𝑡
≤
0.881𝐸

𝜎0.2

 (8) 

where Kc is the reduction factor, as defined by Eq. (9): 

𝐾𝑐 =
(1 − 𝐶)(𝐸 𝜎0.2⁄ )

(8.93 − 𝜆𝑐)(𝐷/𝑡)
+

5.882𝐶

8.93 − 𝜆𝑐
≤ 1 (9) 

in which C is the ratio of the material effective proportional limit to the 0.2% proof stress, and λc = 3.048C is a material 

parameter.  

The accuracy of the resistance predictions determined from the American specification SEI/ASCE-8[19] was evaluated 

through comparisons against the numerical ultimate failure loads. As can be seen from Table 2, the mean ratios of 

Nu/Nu,ASCE are equal to 1.90, 1.75 and 1.48, with COVs of 0.10, 0.11 and 0.10, for austenitic, duplex and ferritic stainless 

steel CHS subjected to combined actions of axial tension and bending moment, respectively. The American specification 

SEI/ASCE-8[19] yields less accurate resistance predictions than the European code EN 1993-1-4[18], principally due to the 

adoption of a conservative linear design interaction curve for stainless steel CHS subjected to eccentric tension. 
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3.4 Australian/New Zealand standard AS/NZS 4673 

The Australian/New Zealand standard AS/NZS 4673[20] adopts the same linear interaction formula for the design of 

stainless steel CHS subjected to eccentric tension as the American specification SEI/ASCE-8[19], as defined by Eq. (10), 

with the difference lying in the calculation of cross-section bending moment resistances, as given by Eq. (11). Specifically, 

the AS/NZS 4673 design provisions take into account the beneficial plasticity and allow the use of the plastic moment 

resistance for stocky CHS with D/t ratios less than 0.078E/σ0.2; the elastic moment resistance is used for non-slender CHS 

with D/t ratios greater than 0.078E/σ0.2 but less than 0.31E/σ0.2, while a reduced elastic moment resistance is adopted for 

slender CHS with D/t ratios greater than 0.31E/σ0.2. Note that the AS/NZS slenderness limit between slender and non-

slender sections is equal to 0.31E/σ0.2, which is more favourable than the limit value of 0.112E/σ0.2, as specified in 

SEI/ASCE-8[19]. The reduction factor for elastic moment capacity Ka, as adopted in AS/NZS[20], differs from that used in 

SEI/ASCE-8[19], as given by Eq. (12). 

𝑁𝐸𝑑
𝑁𝑎

+
𝑀𝐸𝑑

𝑀𝑎

≤ 1 (10) 

𝑀𝑎 =

{
  
 

  
 𝑀𝑝𝑙 for 

𝐷

𝑡
<
0.078𝐸

𝜎0.2

𝑀𝑒𝑙 for 
0.078𝐸

𝜎0.2
≤
𝐷

𝑡
<
0.31𝐸

𝜎0.2

𝐾𝑎𝑀𝑒𝑙 for 
0.31𝐸

𝜎0.2
≤
𝐷

𝑡
<
0.881𝐸

𝜎0.2

 (11) 

𝐾𝑎 =
(1 − 𝐶)(𝐸 𝜎0.2⁄ )

(3.226 − 𝜆𝑐)(𝐷/𝑡)
+

0.178 𝐶

3.226 − 𝜆𝑐
≤ 1 (12) 

The accuracy of the Australian/New Zealand standard[20] was assessed by comparing the failure loads obtained from the 

numerical simulations with the AS/NZS resistance predictions. The mean Nu/Nu,AS/NZS ratios, as reported in Table 2, are 

equal to 1.64, 1.49 and 1.28, with COVs of 0.09, 0.08 and 0.08 for austenitic, duplex and ferritic stainless steel CHS under 

combined axial tensile load and bending moment, respectively. The Australian/New Zealand standard AS/NZS 4673[20] 

was found to be more accurate than the American specification SEI/ASCE-8[19], owing to the use of more precise bending 

moment end point of the design interaction curve. 

3.5 Continuous strength method (CSM) 

The existing codified design interaction formulae for stainless steel CHS subjected to combined tension and bending 

moment yield conservative and scattered resistance predictions, due to the employment of linear interaction (except for 

EN 1993-1-4[18] for Class 1 and 2 sections) between axial tension and bending moment, without considering stress 

redistribution within stocky sections, and to the adoption of inaccurate end points, which are limited to the cross-section 

yield loads and elastic (or plastic) bending moment resistances, without accounting for strain hardening. 

The continuous strength method (CSM)[7–10] is a deformation-based design approach and takes into account strain 

hardening in the determination of cross-section compression and bending moment resistances. For the design of stainless 

steel CHS under combined compression and bending moment (i.e. eccentric compression), Zhao et al.[6] proposed a simple 

but efficient design approach through the use of the EC3 linear and nonlinear design interaction curves but with the CSM 

cross-sectional capacities as the end points; the new design proposal was shown to yield a substantially higher level of 

design accuracy and consistency than the current international design codes. A brief summary of the CSM design proposal 

for stainless steel CHS under eccentric compression is described, and then its applicability to the design of stainless steel 

CHS subjected to eccentric tension is evaluated. 

The use of the CSM requires firstly to identify the deformation capacity of a cross-section, which is achieved through the 

use of the CSM ‘base curve’[7], as given by Eq. (13) for non-slender CHS, in which εcsm is the maximum attainable 

compressive strain of a cross-section under the applied loading, εy is the yield strain, defined as σ0.2/E, and 0.2 / cc r    

is the cross-sectional slenderness, in which σcr is the cross-sectional elastic critical buckling stress under the applied 

loading. For CHS under isolated loading (pure compression and pure bending) and combined compression and bending, 

a unified expression is employed to determine the cross-sectional elastic local buckling stress σcr, as given by Eq. (14), 

where ν is the Poisson’ ratio. With regards to the loading case of combined tension and bending moment, the favourable 

tension effect may lead to improved elastic local buckling stress. Moreover, for CHS under dominant tension load and 

low bending moment, tensile fracture may occur (i.e. no elastic local buckling stress). Extension of the CSM to cover the 

design of tension members is underway, while the unified expression, as given by Eq. (14), was employed herein to 

conservatively calculate the elastic critical stress of stainless steel CHS under combined tension and bending moment. 
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𝜀𝑐𝑠𝑚
𝜀𝑦

=
4.44 × 10−3

𝜆̅𝐶
4.5  but ≤ 𝑚𝑖𝑛 (15,

𝐶1𝜀𝑢
𝜀𝑦

) (13) 

 

𝜎𝑐𝑟 =
𝐸

√3(1 − 𝜈2)

2𝑡

𝐷
 (14) 

Upon determination of the cross-section limiting strain, an elastic, linear hardening material model is then adopted to 

enable the achievement of the design stresses greater than the 0.2% proof stress. The CSM material model features four 

coefficients (C1, C2, C3 and C4) and is depicted in Fig. 3, where C1 is used to define a cut-off strain (see Eq. (13)), in order 

to avoid over-predicting failure strength from the CSM elastic, linear hardening model, C2 is employed in Eq. (15) for the 

definition of strain hardening slope Esh, and C3 and C4 are adopted to predict the strain at the material ultimate strength 

εu=C3(1–σ0.2/σu)+C4. Values of the coefficients for various stainless steel grades were calibrated, on the basis of the 

material tensile coupon test data[8], and are reported in Table 3. 

𝐸𝑠ℎ =
𝜎𝑢 − 𝜎0.2
𝐶2𝜀𝑢 − 𝜀𝑦

 (15) 

The CSM design stress σcsm is then determined by Eq. (16), while the CSM cross-section compression resistance Ncsm,Rd 

is equal to the CSM design stress σcsm multiplied by the gross section area A, as given by Eq. (17), where γM0 is a partial 

safety factor for cross-sectional resistance, with a recommended value of 1.1 for stainless steel. On the basis of the 

assumption of a linearly-varying through-depth strain distribution and the CSM bi-linear (elastic, linear hardening) 

material model, the resistance of a cross-section in bending Mcsm,Rd was firstly derived through numerical integration of 

the CSM design stress distribution throughout the cross-section depth, and then transformed into a simplified design 

formula, as given by Eq. (18)[7–10], where α is the CSM bending coefficient, and equals to 2.0 for CHS. Regarding the 

design of stainless steel CHS under combined compression and bending moment, Zhao et al.[6] proposed a simple but 

efficient approach through the use of the EC3 linear and nonlinear interaction curves but with the CSM compression and 

bending capacities as the end points, as given by Eqs (19) and (20) for 𝜆  𝑐
 > 0.27and 𝜆  𝑐

 ≤ 0.27, respectively, where ncsm 

is the ratio of NEd/Ncsm,Rd and MR,csm,Rd is the reduced CSM bending moment capacity to make allowance for the effect of 

the applied axial load NEd. The applicability of this approach to the design of stainless steel CHS subjected to eccentric 

tension is then assessed. Note that development of the continuous strength method for the design of tension members is 

underway, and the CSM cross-section tension resistances were conservatively taken as the corresponding compression 

capacities herein. 

𝜎𝑐𝑠𝑚 = 𝜎0.2 + 𝐸𝑠ℎ(𝜀𝑐𝑠𝑚 − 𝜀𝑦) (16) 

𝑁𝑐𝑠𝑚,𝑅𝑑 = 𝐴𝜎𝑐𝑠𝑚 (17) 

𝑀𝑐𝑠𝑚,𝑅𝑑 =
𝑊𝑝𝑙𝜎0.2

𝛾𝑀0
[1 +

𝐸𝑠ℎ
𝐸

𝑊𝑒𝑙

𝑊𝑝𝑙

(
𝜀𝑐𝑠𝑚
𝜀𝑦

− 1) − (1 −
𝑊𝑒𝑙

𝑊𝑝𝑙

) (
𝜀𝑐𝑠𝑚
𝜀𝑦

)

𝛼

⁄ ] (18) 

𝑁𝐸𝑑
𝑁𝑐𝑠𝑚,𝑅𝑑

+
𝑀𝐸𝑑

𝑀𝑐𝑠𝑚,𝑅𝑑

≤ 1        for 𝜆̅𝑐 > 0.27 (19) 

𝑀𝐸𝑑 ≤ 𝑀𝑅,𝑐𝑠𝑚,𝑅𝑑 = 𝑀𝑐𝑠𝑚,𝑅𝑑(1 − 𝑛𝑐𝑠𝑚
1.7 ) ≤ 𝑀𝑐𝑠𝑚,𝑅𝑑         for 𝜆̅𝑐 ≤ 0.27 (20) 

  The numerical results are normalised by the CSM tension and bending moment capacities, and plotted against the 

proposed linear and nonlinear design interaction curves, as depicted in Figs 4(a)–4(c). The comparison results generally 

reveal that the CSM design interaction curves yield a more accurate representation of the data points, in contrast to the 

EC3 design interaction curves, which lie well below the numerical results, as shown in Figs 2(a)–2(c). Note that the data 

points normalised by the CSM cross-sectional capacities in Figs 4(a)–4(c) are shown to be slightly scattered, especially 

for stainless steel CHS subjected to large tensile loads; this is mainly due to the conservative use of the CSM cross-

sectional compression resistances as the corresponding tension capacities in the calculation. More consistent predictions 

of stainless steel CHS under combined tension and bending are expected to be achieved, upon the development of the 

CSM for tension members.  
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The accuracy of the CSM design proposals for stainless steel CHS subjected to eccentric tension is assessed through 

comparing the numerically derived failure loads against the predicted failure loads determined from Eqs (19) and (20). 

The mean ratios of numerical to CSM predicted failure loads Nu/Nu,csm, as reported in Table 2, are equal to 1.21, 1.17 and 

1.10, and the corresponding COVs are equal to 0.10, 0.11 and 0.06 for austenitic, duplex and ferritic stainless steel CHS 

under combined axial tension and bending moment, respectively, indicating that the CSM design proposals result in a 

substantially higher level of design accuracy than the current international design standards; this is also evident in Figs 

5–7, where the failure loads predicted from the CSM and the three aforementioned design standards are plotted against 

the numerical failure loads. 

3.6 Summary 

Overall, the American specification SEI/ASCER-8[19] leads to the most conservative resistance predictions for stainless 

steel CHS under combined tension and bending moment, due to the adoption of a linear design interaction curve anchored 

to conservative tension and bending moment end points, which are calculated without taking into account strain 

hardening. The Australian/New Zealand standard AS/NZS 4673[20] also employs a linear design interaction curve, but 

generally results in more accurate and consistent resistance predictions than the American specification SEI/ASCE-8[19], 

owing to the consideration of plasticity in the determination of cross-section bending moment resistances (i.e. more 

accurate bending moment end points). The European code EN 1993-1-4[18] adopts a nonlinear design interaction curve 

for stocky (Class 1 and 2) CHS under combined tension and bending moment, and yields the most accurate capacity 

predictions among the three international design standards. However, none of these codified design methods considers 

strain hardening, and therefore all lead to conservative resistance predictions of stainless steel CHS under eccentric 

tension. The CSM design proposals of adopting the EC3 linear and nonlinear interaction curves but with the CSM cross-

sectional capacities as the end points are shown to result in a substantially higher level of design accuracy than the 

established design standards. 

4 Reliability Analysis 

Statistical analyses are performed to evaluate the reliability of the CSM design proposals for stainless steel CHS subject 

to combined axial tension and bending, based on a total of 750 numerical results, according to the EN 1990 

requirements[32]. In the present reliability analysis, the material over-strength ratios for austenitic, duplex and ferritic 

stainless steels were respectively taken as 1.3, 1.1 and 1.2, with COVs equal to 0.06, 0.03 and 0.045, and the COV of the 

stainless steel cross-section geometric properties was equal to 0.050, following the recommendation by Afshan et al.[33]. 

Table 4 reports the key obtained statistical parameters, in which kd,n is the design fractile factor (ultimate limit state), b is 

the mean ratio of test and numerical resistances to design model resistances, Vδ is the COV of the tests and numerical 

simulations relative to the resistance model, Vr is the COV incorporating the uncertainties of model and basic variables, 

and γM0 is the partial safety factor. The resulting partial factors for all the three stainless steel grades are less than the 

currently recommended value of 1.1 in EN 1993-1-4[18], therefore demonstrating the reliability of the CSM design 

proposals for stainless steel CHS subjected to combined tension and bending moment. 

5 Conclusions 

Finite element modelling and design of stainless steel CHS subjected to combined actions of axial tension and bending 

moment have been carried out. Numerical models were developed to simulate both the local buckling and fracture 

behaviour of stainless steel CHS under eccentric tension. The developed FE models were validated against the previous 

eccentric tension tests on CHS, and then employed to conduct parametric studies to generate structural performance data 

over a broad range of stainless steel grades, cross-section geometries and loading combinations. The derived FE results 

were employed to evaluate the accuracy of the established design provisions for stainless steel CHS under combined 

tension and bending moment given in the European code EN 1993-1-4[18], American specification SEI/ASCE-8[19] and 

Australian/New Zealand standard AS/NZS 4673[20]. Generally, all the three international design standards were found to 

yield conservative and scattered resistance predictions, due to the employment of linear design interaction curves (except 

for EN 1993-1-4[18] for Class 1 and 2 sections), without considering stress redistribution within stocky sections, and to 

the adoption of inaccurate end points, which were limited to the cross-section yield loads and elastic (or plastic) bending 

moment resistances, without accounting for strain hardening. The CSM design proposals adopt the EC3 linear and 

nonlinear interaction curves, but anchored to the more accurate tension and bending moment end points determined from 

the continuous strength method[6–10] to rationally consider strain hardening, and were shown to result in substantially 

improved predictions of resistances of stainless steel CHS subjected to eccentric tension. Finally, statistical analyses were 

performed to confirm the reliability of the CSM design proposals, according to the EN 1990 requirements[32]. 
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6 Figures 

 

(a) CHS 140×3 (e0=0 mm) 

 

(b) CHS 140×3 (e0=70 mm) 

Fig. 1  Experimental and numerical load–end elongation curves for typical CHS stub column specimens[31] under 

eccentric tension 

 

(a) Austenitic stainless steel 
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(b) Duplex stainless steel 

 

(c) Ferritic stainless steel 

Fig. 2 Eccentric tension FE results normalised by the plastic moment capacity and yield load (i.e. the EC3 end 

points for Class 1 and 2 cross-sections) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 CSM elastic, linear hardening material model 
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(a) Austenitic stainless steel          (b) Duplex stainless steel 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Ferritic stainless steel 

Fig. 4 Eccentric tension FE results normalised by CSM cross-sectional capacities 
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Fig. 5 Comparison of test and FE results with CSM and EN 1993-1-4 strength predictions 

 

Fig. 6 Comparison of test and FE results with CSM and SEI/ASCE-8 strength predictions 

 

Fig. 7 Comparison of test and FE results with CSM and AS/NZS strength prediction 
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7 Tables 

 

Table 1  Summary of key material properties employed in the FE models 

Material grade E σ0.2 σ1.0 σu R-O coefficients 

 (N/mm2) (N/mm2) (N/mm2) (N/mm2) n m 

Austenitic 190000 355 396 780 5.3 1.9 

Duplex 198000 635 694 756 6.0 4.0 

Ferritic 199000 470 485 488 7.3 10.9 

 

Table 2  Comparisons of numerical results of stainless steel CHS under eccentric tension with predicted resistance 

Material grade No. of FE data  Nu/Nu,EC3 Nu/Nu,ASCE Nu/Nu,AS/NZS Nu/Nu,csm 

Austenitic 250 
Mean 1.47 1.90 1.64 1.21 

COV 0.10 0.10 0.09 0.10 

Duplex 250 
Mean 1.35 1.75 1.49 1.17 

COV 0.12 0.11 0.08 0.11 

Ferritic 250 
Mean 1.16 1.48 1.28 1.10 

COV 0.12 0.10 0.08 0.06 

 

Table 3  Summary of the CSM material model coefficients for each stainless steel grade 

Material grade C1 C2 C3 C4 

Austenitic 0.10 0.16 1.00 0 

Duplex 0.10 0.16 1.00 0 

Ferritic 0.40 0.45 0.60 0 

 

Table 4  Reliability analysis results calculated according to EN 1990 

Material grade No. of FE data kd,n b V𝜹 V𝒓 𝜸𝑴𝟎 

Austenitic 250 3.130 1.159 0.094 0.122 0.98 

Duplex 250 3.130 1.099 0.103 0.118 1.09 

Ferritic 250 3.130 1.076 0.054 0.086 1.01 

 

 

 


