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Abstract 

In structural frames, second order effects refer to the internal forces and moments that arise as a result of deformations 

under load (i.e. geometrical nonlinearity). EN 1993-1-1 states that global second order effects may be neglected if the 

critical load factor of the frame cr is greater than 10 for an elastic analysis, or greater than 15 when a plastic global 

analysis is used. No specific guidance is provided in EN 1993-1-4 for the design of stainless steel frames, for which the 

nonlinear stress-strain behaviour of the material will result in greater deformations as the material loses its stiffness. A 

study of the effects of material nonlinearity on the stability of stainless steel frames is presented herein. A series of 

different frame geometries and loading conditions are considered. Based on the findings, proposals for the treatment of 

the influence of material nonlinearity on the global analysis and design of stainless steel frames are presented.  
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1 Introduction 

Stainless steel is widely used across a range of industries with its key advantage over ordinary carbon steel being its 

corrosion resistance and durability. Although a number of design standards for stainless steel currently exist, their 

provisions have generally been based on a presumed equivalence with the carbon steel design rules. However, stainless 

steel and carbon steel have distinctly different material characteristics; while carbon steel is accurately characterised by a 

bilinear (elastic, perfectly plastic) stress-strain response, stainless steel exhibits nonlinear rounded stress-strain behaviour 

with no sharply defined yield point. It is important that the codes reflect these differences so as to ensure safe, efficient, 

and structurally sound design. The current European rules for global analysis and design are examined in this paper, 

assessing whether the methods provided are suitable for stainless steel. Particular attention is given to the extent to which 

the differences between the behaviour of stainless steel and carbon steel frames are adequately recognised.  

EN 1993-1-4[1] gives supplementary guidance for the design of stainless steel structures that complement the design rules 

given for structural carbon steel in EN 1993-1-1[2]. Section 5 of EN 1993-1-1 outlines the rules for structural analysis with 

detailed subsections on structural modelling, global analysis and imperfections, as well as methods of analysis considering 

material nonlinearities. The guidance on material nonlinearities largely relates to the occurrence of traditional idealised 

plastic hinges, as seen in carbon steel structures. However, such hinges do not form in stainless steel structures; instead 

zones of plasticity with gradually reducing stiffness, but with peak capacities well in excess of the traditional plastic 

moment are exhibited[3]. EN 1993-1-1 also states that “elastic global analysis may be used in all cases” and that “elastic 

global analysis should be based on the assumption that the stress-strain behaviour of the material is linear, whatever the 

stress level is”. The supplementary rules for stainless steel give no additional information for the global analysis of 

stainless steel structures, though an analytical expression for the description of the rounded stress-strain response of 

stainless steel based on the two stage Ramberg-Osgood model[4,5,6] is given in Annex C[1]. This paper assesses whether 

the assumption of an elastic global analysis is sufficient or whether, due to the significant nonlinearity of stainless steel, 

a plastic global analysis is necessary.  

Fig. 1 shows typical load-displacement paths determined from different types of structural analyses, displaying the effects 

of material and geometric nonlinearities and their importance in the global analysis of structures. Geometrical 

nonlinearities may result either from global imperfections and deformations associated with frame instability, known as 

‘𝑃 − ∆’ effects, or member imperfections and deformations associated with member instability, known as ‘𝑃 − 𝛿’ effects. 

Whether or not global second order effects can be ignored depends on the extent to which they modify the structural 

behaviour or increase the forces and moments in the members. In common with other structural steel design standards, 

this assessment is made in EN 1993-1-1[2] on the basis of the value of the critical load factor 𝛼cr, which is the amount by 

which the design loading would have to be increased to cause elastic instability of the frame in a global sway mode. 

Second order effects are deemed to be sufficiently small to be ignored when 𝛼cr > 10 for an elastic analysis and 𝛼cr >
15 for a plastic analysis. These guidelines were developed on the basis of linear elastic or linear elastic, perfectly plastic 

material behaviour; their validity in the case of the nonlinear rounded material response of stainless steel is assessed in 

this paper.   
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 Fig. 1  Methods of structural analysis (LA = Linear Analysis; GNA = Geometrically Nonlinear Analysis; 

MNA = Materially Nonlinear Analysis; GMNIA = Geometrically and Materially Nonlinear 

Analysis with Imperfections) 

The assessment is carried out by first generating benchmark results for a series of frames using geometrically and 

materially nonlinear analyses with imperfections (GMNIA). The Continuous Strength Method (CSM) is used to mimic 

local buckling in the beam element models. The influence of material nonlinearity is observed and a proposal to account 

for the effect of plasticity on the generation of second order effects is made.  In Section 3 the current design rules for 

stainless steel are applied to the benchmark frames, considering different global analysis options as well as cross-section 

and member checks. Based on the results from the study, the consequences of material nonlinearity and stiffness 

degradation on the deterioration of frame stability are discussed in Section 4, concluding with design recommendations. 

2 Benchmark Frame Modelling 

2.1 Introduction 

Finite element (FE) models were developed using the general purpose FE software ABAQUS[7]. Portal frames constructed 

using welded I-sections were simulated with the geometry of the standard European HEB 340 cross-section. This section 

is a Class 1 cross-section in bending and is therefore deemed capable of reaching and maintaining its full plastic moment 

resistance, according to the traditional definition. The 2-noded linear Timoshenko B31OS beam element, from the 

ABAQUS element library, was employed to create the models and was used in all numerical simulations. Fig. 2 shows 

the basic frame configuration modelled in this study. Both pinned and fixed boundary conditions were considered at the 

column bases as well as a number of loading arrangements, as summarised in Table 1. The width 𝐿 of all frames was 

taken to be 10 m, with the frame heights ℎ varying between 5 m and 15 m for each case.  

 

 Fig. 2  Details of portal frames modelled  
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Table 1 Frame cases considered 

Frame case no.  Boundary conditions Horizontal loading 𝑯 

1 Fixed 0.05𝑉 

2 Fixed 0.2𝑉 

3 Fixed 0.5𝑉 

4 Pinned 0 

The members were connected via fixed multi-point constraint ties at their ends providing full continuity. The frames were 

constrained out-of-plane such that only in-plane major axis buckling was considered. 100 elements were used to model 

each of the members, to accurately capture the spread of plasticity, and the modified Riks method[7] was used to trace the 

full load-deformation response of the frames. The displacements, load factors, section forces and section moments were 

extracted from all analyses.  

In the following subsections, the elastic buckling load factors 𝛼cr from a linear buckling analysis (LBA) and ultimate load 

factors 𝛼u from a geometrically and materially nonlinear analysis with imperfections (GMNIA) of the considered frames 

are determined. A comparison of the level of moment amplification in the frames in the case of elastic and plastic analysis 

is then carried out, and a proposal to account for the influence of plasticity on frame stability is made.  

2.2 Elastic buckling load factor 𝜶𝐜𝐫 

There are two common methods for determining the elastic critical load factor 𝛼cr of frames. The first method is the 

approximate method, originally proposed in [8], and given in Clause 5.2.1(4) of EN 1993-1-1; this approach can be used 

for “portal frames with shallow roof slopes and beam-and-column type plane frames when the axial compression in the 

beams is not significant”. The second method is to conduct a linear buckling analysis of the frame under the applied 

loading conditions and to take 𝛼cr as the Eigenvalue corresponding to the lowest sway buckling mode. This represents 

the factor by which the applied loading would need to be increased to cause elastic instability of the frame in a global 

sway mode. Throughout this study, 𝛼cr has been determined using the more accurate Eigenvalue approach, under the 

applied loading that causes collapse of the frame (i.e. 𝛼u = 1.0 - see Section 2.3), as predicted by GMNIA. 

2.3 Ultimate load factor 𝜶𝐮 

The calculation of the ultimate load factors of the frames from geometrically and materially nonlinear analyses with 

imperfections (GMNIA) is described in this section. These are taken as the ‘true’ failure load factors of the frames and 

are used in this study as benchmark load factors, against which the various design approaches considered in Section 3 are 

assessed. 

2.3.1 Material modelling 

For the benchmark GMNIA models, the rounded nonlinear stress-strain response of stainless steel, defined on the basis 

of the two-stage Ramberg-Osgood formulation[4], given by Eqs. (1)-(2), where 𝜀 and 𝜎 are the strain and stress 

respectively, 𝑓y is the yield (0.2% proof) stress, 𝐸 is the Young’s modulus, 𝑓u is the ultimate stress, 𝐸y is the tangent 

modulus at the yield (0.2% proof) stress, defined by Eq. (3), 𝜀u is the ultimate strain, and 𝑛 and 𝑚 are the strain hardening 

exponents, was employed.  

𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝑓y
)

𝑛

       for       𝜎 ≤ 𝑓y (1) 

𝜀 = 0.002 +
𝑓y

𝐸
+
𝜎 − 𝑓y

𝐸y
+ 𝜀u (

𝜎 − 𝑓y

𝑓u − 𝑓y
)

𝑚

       for       𝑓y < 𝜎 ≤ 𝑓u (2) 

𝐸y =
𝐸

1 + 0.002𝑛
𝐸
𝑓y

 
(3) 

For this study, a single stress-strain curve for a typical austenitic stainless steel has been considered, with                                  

𝐸 = 200000 N/mm2, 𝑓y = 310 N/mm2, 𝑓u = 670 N/mm2,  𝑛 = 6.3, and 𝜀u and 𝑚 defined by Eqs. (4) and (5), 

respectively[1]. This stress-strain curve is depicted, up to 5% strain, in Fig. 3. 

𝜀u = 1 −
𝑓y

𝑓u
 (4) 

𝑚 = 1 + 3.5
𝑓y

𝑓u
 (5) 
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 Fig. 3  Stress-strain response for a typical austenitic stainless steel defined through the two-stage 

Ramberg-Osgood model 

2.3.2 Imperfections and residual stresses 

Initial imperfections can have a significant effect on the development and spread of plasticity, and hence the stability of 

structural members and frames[9]. In this study, an initial member out-of-straightness in the form of a half-sine wave and 

with a magnitude of 1/1000 of the member length was assumed while, for the initial frame imperfection an out-of-

plumbness 1/200 of the frame height was assumed, as recommended in EN 1993-1-1[2]. The geometric imperfections 

were incorporated into the models in the most unfavourable directions considering the applied loading and boundary 

conditions. The initial frame out-of-plumbness was applied as an equivalent horizontal force. 

Residual stresses can influence the performance of structural members by causing premature yielding and loss of stiffness, 

resulting in reduced ultimate load carrying capacity. Residual stress distributions in stainless steel sections differ from 

those in equivalent carbon steel sections due to differences in physical and thermal properties[10]. The modified ECCS 

residual stress model[11] developed for stainless steel welded I-sections by Yuan et al.[12] has been incorporated into the 

FE models.  Forty-one integration points were used within each flange and web of the sections to ensure that the residual 

stress distribution and subsequent spread of plasticity under the applied loading could be accurately captured. The residual 

stresses were introduced by defining the initial stress values at the 121 integration points across the open section, through 

the SIGINI user subroutine[7].   

2.3.3 Simulation of local buckling 

Advanced structural analysis is commonly carried out using finite element models constructed with beam elements. Beam 

elements are incapable of capturing the effects of local buckling as they are nondeforming line elements. However, 

disregarding local buckling can lead to overestimations of system strengths leading to unsafe design. This is a concern 

for all materials but particularly for stainless steel due to the nonlinear stress-strain response and the pronounced 

development of strain hardening. Fig. 4 shows the results from an example simply-supported beam under 3-point bending. 

While the beam FE model never reaches a peak moment, an equivalent shell FE model (with local imperfections of 

amplitude 1/200 of the plate width) which allows for local buckling, exhibits a peak moment of about 1.35 times the 

plastic moment capacity 𝑀pl, with 𝑀pl is the capacity predicted for the modelled Class 1 HEB 340 cross-section according 

to EN 1993-1-4. 
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Fig. 4            Response from an HEB 340 simply-supported beam under 3-point bending  

To simulate local buckling in the beam element models, and also to allow for the beneficial influence of strain hardening, 

the strain limits defined by the Continuous Strength Method (CSM) are employed herein. The CSM is a deformation-

based method that replaces the concept of cross-section classification with a nondimensional measure of the cross-section 

deformation capacity, allowing for the incorporation of strain hardening[13]. The CSM has two key components (i) a 

continuous ‘base curve’ to determine the maximum strain that a cross-section can withstand under the applied loading, 

and (ii) an elastic, linear hardening material model allowing for strain hardening, to enable design stresses greater than 

the 0.2% proof stress to be achieved[14]. In this part of the study, only the CSM maximum strain 𝜀csm was employed, and 

the ultimate load factor of the frames 𝛼u was defined either at an instability induced natural peak in load-deformation 

response or at the point where the CSM strain limit is achieved at any cross-section. 

The CSM base curve is given by Eq. (6), where 𝜆̅p is the local cross-sectional slenderness, 𝜀y is the yield strain equal to 

𝑓y 𝐸⁄ , 𝜀u = 1 − 𝑓y 𝑓u⁄  and 𝐶1 = 0.10 for austenitic stainless steel.  

𝜀csm
𝜀y

=

{
 
 

 
 
0.25

𝜆̅p
3.6

≤ min (15,
𝐶1𝜀u
𝜀y

)         for        𝜆̅p ≤ 0.68

(1 −
0.222

𝜆̅p
1.05

)
1

𝜆̅p
1.05

              for        𝜆̅p > 0.68

 (6) 

The cross-sectional slenderness is calculated using Eq. (7), where 𝑓y is the yield stress and 𝜎cr is the elastic critical 

buckling stress of the cross-section. The software CUFSM[15] was used to calculate the elastic critical buckling stress of 

the cross-section under various in-plane stress distributions ranging from pure compression to pure bending. The CSM 

strain limit, as with cross-section classification, can be based on the instantaneous stress distribution within the section 

under consideration, with pure compression (𝜓 = 𝜎2 𝜎1⁄ = 1) being the most severe and therefore leading to the lowest 

CSM strain limit; with increasing bending contributions, the stress distribution becomes more favourable (towards 𝜓 =
−1 for pure bending) and hence the CSM strain limit increases. This is illustrated in Fig. 5 for an HEB 340 section with                   

𝑓y = 310 N/mm2 under compression and major axis bending. The instantaneous strain limit 𝜀csm, determined for the 

local slenderness 𝜆̅p corresponding to the elastic buckling stress of the cross-section from CUFSM at each increment of 

the global structural analysis, is used throughout this study.  

𝜆̅p = √
𝑓y

𝜎cr
 (7) 
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 Fig. 5  Normalised CSM strain limit for an HEB 340 section under varying stress distributions  

The CSM strain limit is applied to strains output from the structural analysis, but averaged over a finite length of member. 

Using average strains over a finite length of member is preferable to using peak strain to avoid excessive sensitivity to 

the mesh size and the occurrence of spurious results, to reflect the fact that plastic hinges and local buckling require a 

finite length over which to develop, and to allow for local moment gradient effects. Based on ongoing work at Imperial 

College, it has been shown that the strains from the structural analysis should be averaged over a characteristic length, 

related to the local buckling half wavelength. Lay[16] proposed Eq. (8) for estimating the local buckling half wavelength 

𝐿buckle of I-sections in the inelastic regime, where 𝑏 is the overall flange width, 𝑡f is the flange thickness, 𝑡w is the web 

thickness, 𝐴f is the flange area and 𝐴w is the web area. Strains are averaged over the length 𝐿buckle along the member in 

this study, and this length defines the maximum element size to be used in the FE models.  

𝐿buckle = 1.42𝑏
𝑡f
𝑡w
(
𝐴w
𝐴f
)
0.25

 (8) 

For the HEB 340 cross-section considered in Fig. 4, the cross-section slenderness under bending 𝜆̅p is equal to 0.38, 

which corresponds to a normalised CSM strain limit 𝜀csm 𝜀y⁄ = 7.84. Applying this strain limit to the beam FE model – 

see Fig. 4 - results in a capacity prediction close to but on the safe side of the peak moment from the shell FE model, and 

considerably above the plastic moment capacity, which represents the EN 1993-1-4 cross-section resistance prediction 

for this Class 1 section.  

In all further analyses in this study, ultimate load factors as predicted by GMNIA with the CSM strain limit, 𝛼u, are taken 

to be the ‘true’ benchmark failure values of the considered frames. In cases where the peak load occurs before the CSM 

strain limit is reached, the peak load is simply taken as the ultimate load. This is illustrated in Fig. 6 for the frames 

considered in this study.  

 

Fig. 6 Comparison of the ultimate load factors 𝜶𝐮, considering the CSM strain limit to simulate local 

buckling, and the peak load factors 𝜶𝐩𝐞𝐚𝐤  
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2.4 Results 

The nonlinear stress-strain behaviour of stainless steel results in greater deformations as the material loses its stiffness. 

To assess the consequences of this material nonlinearity on frame stability, a comparison between first and second order 

moments has been made assuming both elastic and nonlinear plastic material behaviour. In the elastic regime, Merchant[17] 

proposed an amplification factor 𝑘amp, which is included in EN 1993-1-1[2] and given by Eq. (9), to be used to estimate 

second order sway moments from a first order analysis. 

𝑘amp =
1

1 −
1
𝛼cr

  
(9) 

where 𝛼cr is the factor by which the applied loading must be increased to cause elastic instability of the frame in a global 

sway mode. 

The ratios of the maximum moments extracted from the FE frame models at 𝛼u using a second order elastic analysis 

𝑀GNA (GNA) and a first order elastic analysis 𝑀LA (LA) are plotted in Fig. 7 against 𝛼cr. Eq. (9) is also plotted in the 

figure. The results from the frame analyses may be seen to follow the response predicted by the 𝑘amp expression very 

closely. Frames with high values of 𝛼cr are not sensitive to second order effects, and the moments from the first and 

second order analyses are almost equal. As 𝛼cr reduces, second order effects become increasingly significant, with 

𝑀GNA 𝑀LA⁄ ≃ 1.1 at 𝛼cr = 10 and 𝑀GNA 𝑀LA⁄ → ∞ as 𝛼cr approaches unity. 

 

Fig. 7 Relationship between bending moments from first and second order elastic analyses at 𝜶𝐮 versus 

𝜶𝐜𝐫 

To assess the impact of material nonlinearity on second order effects, first order plastic (MNA) and second order plastic 

(GMNA) analyses have been carried out on the same frames. The ratios of the maximum GMNA and MNA moments 

𝑀GMNA 𝑀MNA⁄  extracted from the FE models at 𝛼u, along with Eq. (9) are plotted against 𝛼cr in Fig. 8. Unlike in Fig. 7, 

the results no longer match well with the amplification factor, and there is a greater difference between the bending 

moments obtained from the first and second order analyses due to the influence of the nonlinear material response. Hence, 

by ignoring material nonlinearity, the maximum second order forces and moments in the considered frames are 

underestimated.  
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Fig. 8 Relationship between bending moments from first and second order plastic analyses at 𝜶𝐮 versus 

𝜶𝐜𝐫 

2.5 Proposal to account for the influence of plasticity on the development of second order effects 

The ‘average’ reduction in sway stiffness of a frame due to material nonlinearity at a specified load level can be estimated 

through the ratio 𝐾s 𝐾⁄  of the load-lateral deflection curve from a first order plastic analysis (MNA), where 𝐾 is the initial 

stiffness and 𝐾s is the secant stiffness, as shown in Fig. 9. 

 

Fig. 9 Reduction to sway stiffness of frame due to material nonlinearity 

As an approximation, the influence of material nonlinearity on the sway stiffness of frames may be considered by defining 

a modified elastic buckling load factor 𝛼cr,mod, as given by Eq. (10). Clearly, the higher the load level, the greater the 

loss of stiffness due to material nonlinearity and the greater the reduction to the elastic buckling load factor of the frame, 

rendering it more susceptible to second order effects. 

𝛼cr,mod = 𝛼cr
𝐾s
𝐾

 (10) 

The ratio of GMNA to MNA moments were shown in Fig. 7 to lie on the unsafe side relative to the elastic amplifier 𝑘amp, 

adopted in EN 1993-1-1[2], and given by Eq. (9). Based on the modified amplification factor 𝑘amp,mod given by Eq. (11), 

which utilises the modified elastic buckling load factor that takes account of material nonlinearity through the secant 

stiffness, the frame results are replotted in Fig. 10. Good agreement between the frame results and the modified 

amplification factor may be observed. 

𝑘amp,mod =
1

1 −
1

𝛼cr,mod

  
(11) 
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Fig. 10 Relationship between bending moments from first and second order plastic analyses at 𝜶𝐮 versus 

𝜶𝐜𝐫,𝐦𝐨𝐝 

It has been shown in this section that material nonlinearity results in degradation of stiffness and hence enhanced second 

order effects. A method to account for the increased susceptibility to second order effects, whereby the elastic buckling 

load factor of the frame is reduced on the basis of the secant stiffness from a first order plastic analysis has been proposed 

and shown to yield accurate results. Furthermore, as an alternative to conducting a second order plastic analysis when 

sway effects become significant, it is suggested that a first order analysis with sway effects amplified by 𝑘amp,mod (Eq. 

(11)) could be carried out. 

3 Assessment of Design Approaches 

3.1 Introduction 

In this section, the benchmark GMNIA results generated in Section 2 are used to assess the suitability and accuracy of a 

range of different design approaches, as listed in Table 2. Design approaches 1-5 employ the EN 1993-1-4 cross-section 

and member checks while approaches 6-10 utilise the Continuous Strength Method. The EN 1993-1-4 and CSM cross-

section checks and member checks are described in Sections 3.2 and 3.3, respectively.  

Following the recommendations of EN 1993-1-1, second order effects may be neglected when 𝛼cr ≥ 10 for elastic 

analysis and 𝛼cr ≥ 15 for plastic analysis, and a first order analysis can be used. For 𝛼cr < 10 (or 15), account should be 

taken of second order effects. The limit of 15 for plastic analysis is recognising the fact that frames have reduced stiffness 

following plasticity so second order effects will be greater. A more consistent approach (rather than one adjusted limit of 

15 for all frames) is to determine the increased degree of flexibility on a frame by frame basis, as with the proposed 

𝛼cr,mod approach, and retain the limit of 10 for all frames and all analysis types. This will be explored further in future 

work, but for the comparisons presented herein, the existing limits on 𝛼cr will be employed. As an alternative to design 

approaches 2, 4, 7 and 9, when 𝛼cr < 10 (or 15), first order analyses may be carried out with amplification to account for 

second order effects using Eq. (9).  
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Table 2 Summary of different design approaches considered and results obtained in comparison to 

benchmark GMNIA results 
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3.2 Cross-section checks 

The cross-section employed for the studied frames (HEB 340) is Class 1 under all considered loading conditions. The EN 

1993-1-4 cross-section resistance is therefore given by 𝑁c,Rd = 𝐴𝑓y 𝛾M0⁄  in compression, where 𝐴 is the cross-sectional 

area and 𝛾M0 is the partial safety factor for cross-section resistance, and 𝑀c,y,Rd = 𝑊pl,y 𝑓y 𝛾M0⁄  in bending, where 𝑊pl,y is 

the major axis plastic section modulus. Under combined loading, the interaction formula given in Clause 6.2.9.1 of EN 

1993-1-1 is employed. The CSM cross-section compression resistance 𝑁csm,Rd for 𝜆̅p ≤ 0.68 (as is the case for HEB 340) 

is given by Eq. (12), where 𝑓csm is the limiting stress determined from the strain hardening material model, defined by Eq. 

(13). 

𝑁csm,Rd =
𝐴𝑓csm
𝛾M0

          for          𝜆̅p ≤ 0.68 (12) 

𝑓csm = 𝑓y + 𝐸sh𝜀y (
𝜀csm
𝜀y

− 1) 
(13) 

The CSM cross-section bending resistance for an I-section with 𝜆̅p ≤ 0.68, bending about the major axis 𝑀csm,y,Rd is given 

by Eq. (14). 

𝑀csm,y,Rd =
𝑊pl,y𝑓y

𝛾M0
[1 +

𝐸sh
𝐸

𝑊el,y

𝑊pl,y

(
𝜀csm
𝜀y

− 1) − (1 −
𝑊el,y

𝑊pl,y

) (
𝜀csm
𝜀y
)

2

⁄ ]     for      𝜆̅p ≤ 0.68 
(14) 

where 𝑊el,y is the major axis elastic section modulus and 𝐸sh = (𝑓u − 𝑓y)/(𝐶2𝜀u − 𝜀y) is the material strain hardening 

modulus, where 𝐶2 = 0.16 for austenitic steel, and 𝜀csm/𝜀y is the strain ratio determined from Eq. (6). 

For cross-sections with 𝜆̅p ≤ 0.60 under combined loading, the CSM utilises the EN 1993-1-1 interaction formula, but 

with CSM end points, as given by Eq. (15). 

𝑀R,csm,y,Rd = 𝑀csm,y,Rd

(1 −
𝑁Ed

𝑁csm,Rd
)

(1 − 0.5𝑎)
    but    𝑀R,csm,y,Rd ≤ 𝑀csm,y,Rd    for      𝜆̅p ≤ 0.60 

(15) 

where 𝑎 = (𝐴 − 2𝑏𝑡f) 𝐴⁄ ≤ 0.5. 

3.3 Member checks 

Member checks are performed to verify the global stability of the members in the frame, which, in the present study, were 

predominately under both axial load and bending (i.e. beam-columns). These checks require the calculation of member 

slenderness, which in turn requires the determination of the buckling length of the members. This buckling length can 

conservatively be taken as the system length (provided any sway effects (for cases where 𝛼cr < 10 for elastic analysis or 

15 for plastic analysis) are appropriately dealt with through a second order analysis or amplified first order analysis), and 

more accurately taken as the calculated effective length. Effective lengths take into consideration the rotational restraint 

provided by the end support conditions and are equal to the distance between the inflection points of the buckled shape. 

The effective lengths have been back calculated herein from the critical load factor using Eq. (16), where 𝐼 is the second 

moment of area, and 𝑁Ed is the applied axial load on the column under consideration at collapse. Non-sway effective 

lengths have been determined in all cases, since the effects of sway are taken into account through the consideration of a 

second order, or amplified first order, analysis. The calculation has been performed by carrying out a linear buckling 

analysis under vertical loads only and with a horizontal prop at the top right of the frame to restrain lateral movement.  

𝐿e = √
𝜋2𝐸𝐼

𝑁cr
= √

𝜋2𝐸𝐼

𝛼cr𝑁Ed
 (16) 

3.3.1 EN 1993-1-4[1] member checks 

The EN 1993-1-4 beam-column design equations mirror those given for carbon steel in EN 1993-1-1, but with 

modifications to the interaction buckling factors to take into account the nonlinear material response and gradual yielding 

of stainless steel[18]. For members under combined compression plus major axis bending, but restrained against lateral 

torsional buckling, the EN 1993-1-4 beam-column member check is given by Eq. (17), where 𝑁Ed is the design axial load, 

𝑀y,Ed is the maximum applied first order bending moment about the major axis, 𝑁b,y,Rd is the major axis column buckling 

resistance,  𝛾M1 is the partial safety factor for member buckling resistance and 𝑘y is the interaction factor, given by Eq. 

(18). The interaction factor has a minimum value of 1.2, so as to prevent overpredictions of beam-column strengths for 

Class 1 and 2 cross-sections[18]. 

𝑁Ed
𝑁b,y,Rd

+ 𝑘y
𝑀y,Ed

𝑊pl,y𝑓y/𝛾M1
≤ 1 (17) 
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𝑘y = 1.0 + 2(𝜆̅y − 0.5)
𝑁Ed
𝑁b,y,Rd

       but      1.2 ≤ 𝑘y ≤ 1.2 + 2
𝑁Ed
𝑁b,y,Rd

 (18) 

3.3.2 Zhao et. al[18] member checks 

Zhao et al.[18] proposed revised design equations based on a comprehensive study of the codified design methods for 

stainless steel square hollow section (SHS) and rectangular hollow section (RHS) beam-columns. The revised beam-

column equation is given by Eq. (19), where 𝑀c,csm,y,Rk is the characteristic CSM design bending resistance, 𝑘csm,y is the 

updated interaction factor, given by Eq. (20) and 𝐷1, 𝐷2 and 𝐷3 are coefficients defining the bilinear relationship between 

𝑘csm,y and 𝜆̅. The coefficients used in this study are 𝐷1 = 2.5, 𝐷2 = 0.35 and 𝐷3 = 1.1
[19].  

𝑁Ed
𝑁b,y,Rd

+ 𝑘csm,y
𝑀y,Ed

𝑀c,csm,y,Rk/𝛾M1
≤ 1 

(19) 

𝑘csm,y = 1 + 𝐷1(𝜆̅ − 𝐷2)
𝑁Ed
𝑁b,y,Rd

       but      𝑘csm,y ≤ 1 + 𝐷1(𝐷3 − 𝐷2)
𝑁Ed
𝑁b,y,Rd

 
(20) 

3.4 Results 

The mean, minimum and maximum ratio of GMNIA to design resistances (𝛼u 𝛼d⁄ ) for the 10 considered design approaches 

(5 Eurocode and 5 CSM based) are shown in Table 2, along with the corresponding coefficients of variation (COV) of the 

ratios for the 28 studied frames. Results below unity indicate design predictions on the unsafe side. 

The mean benchmark to predicted failure load ratios 𝛼u 𝛼d⁄  for design approaches 1-5 (Eurocode based) are 1.55, 1.13, 

1.55, 1.22 and 1.08, respectively, and the corresponding COVs are 0.06, 0.22, 0.05, 0.19 and 0.07. The mean benchmark 

to predicted failure load ratios 𝛼u 𝛼d⁄  for design approaches 6-10 (CSM based) are 1.09, 0.97, 1.02, 1.02 and 1.02, 

respectively, and the corresponding COVs are 0.03, 0.12, 0.02, 0.07 and 0.03. The CSM mean values are closer to unity 

than those resulting from the European code and thus indicate improved accuracy, as also illustrated in Fig. 11. The COVs 

show that the CSM based design approaches generally result in scatter around half that of the EN 1993-1-4 design 

approaches. 

It was shown in Section 2.4 that neglecting material nonlinearity results in underpredicted second order moments and it is 

therefore recommended that a plastic global analysis should always be considered. The CSM design approach considers 

the beneficial effects of strain hardening and this is reflected in the significantly more accurate results of the CSM design 

approaches (6-10) compared with the EN 1993-1-4 design approaches (1-5) in Table 2. The Eurocodes currently state that 

it is sufficient to assume an elastic global analysis, corresponding to design approaches 1 and 2. These give 𝛼u 𝛼d⁄  ratios 

ranging between of 1.38 and 1.71 and 0.83 and 1.49, respectively i.e. the design predictions are highly scattered and range 

from being unconservative in some cases to excessively conservative in others. Considering design approaches 8 and 9, 

the design predictions are vastly improved with 𝛼u 𝛼d⁄  ratios ranging between 1.00 and 1.06 and 0.89 and 1.10, 

respectively. Therefore, the most accurate and consistent design predictions are achieved by employing a plastic global 

analysis with CSM beam-column member checks. 

The EN 1993-1-4 design approaches 3 (for 𝛼cr ≥ 15) and 4 (for 𝛼cr < 15) and the CSM design approaches 8 (for            

𝛼cr ≥ 15) and 9 (for 𝛼cr < 15) are compared against the benchmark GMNIA results in Fig. 11, where the accuracy of the 

design predictions are presented as a function of 𝛼cr. For high 𝛼cr values, design approach 3 (EN 1993-1-4 based) results 

in overconservative strength predictions, with a mean value of 1.55, while design approach 8 (CSM based) results in much 

more accurate strength predictions, with a mean value of 1.02. For very low 𝛼cr values (𝛼cr < 2) both design approaches 

lead to results on the unsafe side with a common minimum value of 𝛼u 𝛼d⁄  of 0.89, though such flexible frames are very 

unlikely to be encountered in practice. 

Finally, comparing design approaches 5 and 10, it can be observed that both lead to accurate results, with mean 𝛼u 𝛼d⁄  

ratios of 1.08 and 1.02, respectively, though the Eurocode cross-section results in rather conservative design prediction in 

some cases, with the maximum 𝛼u 𝛼d⁄  ratio being 1.26. This is reduced to a maximum value of 1.10 when the CSM cross-

section checks are employed.  
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Fig. 11 Comparison of the EN 1993-1-4 and CSM design approaches for plastic analyses 

4 Discussion and Design Recommendations 

In this section, the key results from the study are discussed and suitable design recommendations for the global analysis 

and design of stainless steel frames are made. In Section 2, it was shown that neglecting material nonlinearity resulted in 

underpredicted second order moments for the 28 frames considered. A modified critical buckling load factor was therefore 

proposed on the basis of the secant stiffness from a first order plastic analysis, and shown to provide an accurate measure 

of the susceptibility of the frame to second order effects. The benchmark GMNIA results generated in Section 2 were used 

to assess the current design approaches in Section 3, with the Continuous Strength Method design provisions resulting in 

improved accuracy and reduced scatter over the EN 1993-1-4 design provisions.  

Based on the results, summarised in Table 2, the following observations and recommendations are made: 

 A plastic global analysis should always be employed to prevent the underprediction of second order moments in 

stainless steel frames 

 The Continuous Strength Method (CSM) design provisions result in significantly more accurate strength 

predictions compared with EN 1993-1-4 due to the consideration of strain hardening  

 For the plastic global analysis of stainless steel frames either (i) a first order analysis should be carried out when          

𝛼cr ≥ 15 and a second order analysis performed when 𝛼cr < 15 or, (ii) a first order analysis carried out when 

𝛼cr,mod ≥ 10 and a second order analysis performed when 𝛼cr,mod < 10. As an alternative to a second order 

plastic analysis, a first order analysis with amplification 𝑘amp,mod (yielding similar results to second order 

analysis) may be performed. 

 Advanced analysis (GMNIA) with cross-section checks (i.e. design approaches 5 and 10) yields very accurate 

results, particularly when the CSM cross-section checks are employed. 

5 Conclusions 

The importance of making adequate allowances for the influence of second order effects when conducting global analysis 

and design of frames employing stainless steel members has been examined by comparing the findings from a series of 

numerical analyses that employ different combinations of analysis method and cross-section/member design checks. The 

benchmark against which all design approaches have been assessed is GMNIA, with the Continuous Strength Method 

(CSM) employed to simulate local buckling. Current stainless steel design methods are based on the behaviour of frames 

made from carbon steel, for which the early material softening is absent, meaning that second order effects for stainless 

steel are likely to be more significant and limits of application for existing/approximate methods questionable. 

The degradation of stiffness significantly affects the characteristics of the structural system and subsequent distribution of 

internal forces and moments. If material nonlinearity is considered in the global analysis of a frame, greater deflections 

ensue due to the loss of material stiffness. Therefore, without the consideration of plasticity, moments are underpredicted, 

as shown in Section 2.4. It is recommended that material nonlinearity should always be considered in the global analysis 

of stainless steel frames to account for the increased susceptibility to second order effects. For all frames, when 𝛼cr ≥ 15, 

second order effects may be neglected and a first order plastic analysis (MNA) carried out. For 𝛼cr < 15 a second order 

plastic analysis (GMNA) should be carried out. A new design procedure based on the calculation of a modified critical 

buckling load with reduced stiffness, representing the behaviour of the frame after a certain degree of plastification, has 
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been outlined. For all frames, when 𝛼cr,mod ≥ 10, second order effects may be neglected and a first order plastic analysis 

(MNA) carried out. For 𝛼cr,mod < 10 a second order plastic analysis (GMNA) should be carried out or, alternatively, a 

first order plastic analysis with amplification 𝑘amp,mod (yielding similar results to a second order plastic analysis) may be 

performed. 

Current design provisions have been assessed against the benchmark GMNIA results. It was found that EN 1993-1-4 

generally provides conservative results due to the neglect of strain hardening in the cross-section and beam-column member 

checks. The CSM design provisions were also assessed and shown to give significantly more accurate predictions, with 

reduced scatter, due to account being made for strain hardening. Overall, the most accurate and consistent predictions were 

achieved by employing a plastic global analysis with CSM cross-section and beam-column member checks. In this case, 

mean benchmark to predicted failure load ratios 𝛼u 𝛼d⁄  of 1.02 and 1.02 for first order (MNA) and second order (GMNA) 

analyses (i.e. design approaches 8 and 9), respectively. This is a significant improvement over the current approach (i.e. 

design approaches 1 and 2) which results in mean ratios of 1.55 and 1.13 for first order (LA) and second order (GNA) 

analyses, respectively.  
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