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Abstract 

The Continuous Strength Method provides excellent resistance predictions of stocky cross-sections under different 

loading conditions as it accounts for enhanced material properties, although the method is currently limited to cross-

sectional resistance. The axial stress in short columns potentially exceeds the yield strength as members are stable enough 

to allow partial yielding of non-slender cross-sections and the flexural buckling resistance prediction of these short 

columns is therefore usually underestimated, since equations currently codified in standards do not account for strain 

hardening effects. This paper presents the extension of the Continuous Strength Method to stainless steel Rectangular and 

Square Hollow Section columns, allowing strain hardening effects to be incorporated in the resistance prediction of 

members subjected to compression. The proposed approach is equivalent to the traditional approach for columns codified 

in different standards based on the Ayrton-Perry formulation but considers a different generalized imperfection parameter 

that depends on the cross-sectional slenderness and considered material, so strain hardening effects are directly introduced 

in the formulation. Results show that the proposed Continuous Strength Method approach provides improved predictions 

of the resistance of Rectangular and Square Hollow Section columns for all stainless steel grades. The reliability of the 

proposed approach has been demonstrated through the corresponding statistical analyses. Given the purely analytic nature 

of the proposed approach, it can be used for several materials, such as stainless steel, carbon steel and aluminium, and 

cross-section types for which the Continuous Strength Method has been defined. Finally, the better estimation of the 

flexural buckling behaviour of columns will have a direct impact on the accuracy of beam-column checks. 
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1 Introduction 

The efficient design of structures is one of the mainstays in design practise, regardless the considered construction 

material. This efficiency depends on the adopted structural typology and general design, which rely on the engineers’ 

capacity of searching for optimum solutions. However, the efficiency of a structure also depends on the design provisions 

codified in the different standards. Given the high material cost of stainless steel in comparison to carbon steel, the 

development of efficient design expressions that include all specific features of this corrosion-resistant material is crucial 

to incorporate it in the routine engineering practise. Improving the expressions codified in design standards (e.g. 

EN 1993-1-4 [1], AS/NZS4673 [2], SEI/ASCE 8-02 [3]) and accounting for the non linear stress-strain response and strain 

hardening effects, stainless steels would lead to more efficient, economic and sustainable structural designs. 

The Continuous Strength Method (CSM) is a deformation-based design method that accounts for strain hardening effects 

in non-slender cross-sections, allowing a more efficient design of stainless steel structures. Currently, the method provides 

design expressions for the cross-sectional resistance against compression, bending and combined loading conditions, and 

design prescriptions have also been proposed for the analysis of statically indeterminate structures. However, the 

extension of the CSM to member behaviour is still being developed. Several research works on the behaviour of stainless 

steel members subjected to combined loading [4,5] highlighted the need of providing accurate end point resistance 

predictions in order to provide adequate resistance estimations. Zhao et al[5] proposed to incorporate the CSM bending 

moment resistance predictions in the design of stainless steel beam-columns with stocky cross-sections, but no 

modification was proposed for the flexural buckling resistance. First efforts to extend the CSM to stainless steel columns 

were published by [6], although the method is based on several modification factors that account for the nonlinear material 

response and cross-section slenderness, fitted from experimental and numerical data on stainless steel columns. Other 

research works accounting for strain hardening effects on stainless steel members, but based on the Direct Strength 

Method approach, can be also found [7]. 

This paper presents a consistent new approach for stainless steel members subjected to compression based on the CSM 

that allows the incorporation of strain hardening effects in the column resistance prediction for members stable enough 

to allow partial yielding of the cross-section. It is demonstrated that the new proposal provides more accurate predictions 

of the flexural buckling resistance of stainless steel columns and it has been statistically validated. 
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2 The Continuous Strength Method for Cross-section Resistance 

The Continuous Strength Method (CSM) is a deformation-based design method that accurately predicts the cross-

sectional resistance of several metallic materials such as stainless steel, carbon steel and aluminium. The method was 

originally developed for stocky cross-sections and allowed the implementation of strain hardening effects in the 

calculation of resistances. However, recent research works [8,9] extended the CSM also for slender cross-sections, governed 

by local buckling effects, providing a direct design approach where the reduction of the gross-section resistance is 

determined by a strength curve, avoiding the calculation of effective widths, usually tedious and iterative procedures. 

Several research works have demonstrated that the method provides excellent cross-sectional resistance predictions for 

non-slender cross-sections for various loading conditions, being more accurate that the expressions currently codified in 

different standards [1,2,3]. However, and according to the Fourth Edition of the Design Manual for Structural Stainless 

Steel [10], for symmetrical sections the CSM shows little advantage for cross-section slenderness greater than 0.68 for 

plated sections such as the RHS and SHS considered in this study, although significant advantages are observed for 

asymmetrical sections across the full range of cross-section slenderness. 

The CSM is based on a base curve that determines the maximum strain that a cross-section can reach CSM evaluated in 

terms of its relative slenderness 𝜆𝑝̅̅ ̅ and the yield strain y, as shown in Eq. (1a) and Eq. (1b) for stocky and slender cross-

sections, respectively, adjusted considering stub column and beam test data [8,9,11]. The 𝜆𝑝̅̅ ̅ = 0.68 limit is adopted given 

that, beyond this limit, there is no significant benefit of considering material strain hardening effects and local buckling 

effects govern cross-sectional failure. The cross-sectional slenderness for each loading case can be calculated from 

Eq. (2), where crl is the critical local buckling stress, obtained from the relevant buckling mode in an eigenvalue analysis 

and 0.2 corresponds to the 0.2% proof stress. At the same time 𝜆𝑝̅̅ ̅ can be also calculated according to EN 1993-1-4 [1] for 

the most slender plate element in the cross-section. It should be noted that the former procedure accounts for element 

interaction whereas the latter does not. Two upper bounds, shown in Eq. (1a), are also provided on the predicted 

deformation capacity CSM for stocky cross-sections. The first limit corresponds to the material ductility requirements in 

EN 1993-1-1 [12] while the second ensures that resistances are not over-predicted due to the adopted bilinear stress-strain 

material model. For austenitic and duplex stainless steel grades C=0.1 was adopted, but C=0.4 was defined for ferritics, 

and u corresponds to the ultimate strain. 
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𝜆̅𝑝 = √
𝜎0.2
𝜎𝑐𝑟𝑙

 (3) 

Once the maximum strain that the cross-sections can attain CSM is calculated, the compression and bending resistance of 

stocky and slender cross-sections can be determined from Eq. (3) and Eq. (4), respectively. In these equations Ny is the 

squash load of the gross cross-section, Mpl and Mel are the plastic and elastic bending moment capacities and Wpl and Wel 

correspond to the plastic and elastic modulus, respectively. In addition, E is the Young’s modulus and Esh is the strain 

hardening modulus calculated from Eq. (5) for the different stainless steel grades, based on the most relevant material 

parameters defined before and where u is the tensile strength. The simplified bilinear material model including strain 

hardening effects was proposed for austenitic and duplex stainless steel grades by [11], which was later adapted for the less 

ductile ferritic grades [13]. 
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 for austenitic and duplex grades (5a) 
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for ferritic grades (5b) 

Several research works [14,15] also extended the CSM approach for stocky cross-sections to more general loading 

conditions such as combined axial compression and bending moment. Proposals are based on the more accurate 

compression and bending end points calculated according to the CSM with different approaches based on the interaction 

equations given in EN 1993-1-1 [12] and all studies demonstrated that they provide excellent strength predictions.  

The CSM provides excellent resistance prediction of the cross-sectional resistance of a number of cross-section types and 

materials, both for stocky and slender sections. In this process of continuous development, a new CSM approach is 

proposed to provide a consistent and accurate method applicable not only for cross-sections, but also for structural 

members. 

3 Gathered Experimental Data and FE Ultimate Strengths  

The analysis presented in this paper has been based on an extensive experimental and numerical database of stainless 

steel RHS and SHS members subjected to compression. This section presents the gathered experimental data collection 

and summarises the most relevant aspects of the conducted Finite Element (FE) numerical analysis. 

3.1 Experimental data collection 

The behaviour of stainless steel RHS and SHS members subjected to compression has been extensively analysed through 

different experimental programmes during last decades, including several stainless steel grades. Column tests on 

austenitic [16-21], ferritic [4,22,23] and duplex (or lean duplex) [24-27] stainless steels have been considered in the analysis. 

3.2 FE model validation 

The column FE models utilised in the parametric study were performed by the general purpose software Abaqus and they 

were first validated against the experimental results reported in Arrayago et al. [4]. The mid-surfaces of the cross-sections 

were modelled by using four-node shell elements with reduced integration S4R, widely used when modelling cold-formed 

stainless steel cross-sections. The computational efficiency and reliability of the results was guaranteed by a mesh 

convergence study and the analyses were conducted with 5 mm long shell elements. The initial geometric imperfections 

with the shape of elastic buckling modes were introduced into the model by conducting a previous linear elastic buckling 

analysis, and the introduced imperfection amplitudes were those measured in the specimens and reported in [4]. The 

non-linear problem was solved by using a modified Riks analysis. 

In order to model the pin-ended boundary conditions of the tests, the edge elements at the ends of the members were 

kinematically coupled and connected to two reference points. These reference points were defined according to what was 

described in [4], assuming the effective length of the members equal to the distance between knife-edges, 50 mm away 

from each specimen end. All degrees of freedom except the rotation around minor axis were restrained at the lower 

reference point, while longitudinal displacement and minor axis rotations were set free in the upper one. The load was 

then introduced as an imposed displacement at the upper reference point and no restrictions were defined in the rest of 

the nodes. 

The validation of the FE models was performed considering the flat and corner regions of the cross-sections, assigning 

the corresponding measured stress-strain properties to each region. Corner regions were also extended to the adjacent flat 

parts by a length equal to two times the thickness of the element, as assumed in [24,25]. According to [21] coupons curve 

longitudinally when cut from the tube and return to their original straight shape when they are gripped in the testing 

machine. During the straightening process, the bending residual stresses are approximately reintroduced, so the obtained 

stress-strain curves include the bending residual stresses and do not need to be reintroduced into the FE models. The 

material parameters describing the behaviour of flat and corner parts can be found in [4].  

Experimental load-lateral deflection curves have been compared to the corresponding FE results, which is presented in 

Figure 1 for the considered columns and in Table 1, where the mean values and the coefficients of variation (COV) of the 

numerical-to-experimental ratios of the ultimate loads and the corresponding lateral deflections are reported. These 

comparisons demonstrate that the derived numerical analyses are capable of accurately predicting the ultimate loads and 

replicating the full experimental histories. It is also remarkable that the failure modes of the obtained FE models are in 

good agreement with experimental results. 
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Fig. 1 Comparison of experimental and FE curves for ferritic stainless steel columns 

 

Table 1 Comparison between experimental and FE results for ferritic stainless steel columns 

Specimen Fu,FE/Fu,exp du,FE/du,exp 

80x80x4 1.00 0.93 

60x60x3 1.02 0.99 

80x40x4 1.01 1.03 

120x80x3 0.97 0.80 

70x50x2 1.02 1.00 

Mean 1.00 0.95 

COV 0.021 0.096 

3.3 Numerical parametric studies 

Once the numerical model was validated against experimental results for stainless steel RHS and SHS members subjected 

to compression, a parametric study was developed through a combination of Python and Abaqus tools.  

Initial global imperfection amplitudes have great influence on the flexural buckling behaviour of stainless steel columns 

and the values considered in the parametric study need to be carefully defined, although different values have been 

considered in the numerical studies conducted during this last decade. Considering that the measured initial imperfection 

amplitudes of the members tested in the experimental programme reported in [4] ranged between L/1000 and L/2000 and 

that residual stresses are implicitly incorporated in the models through the measured stress-strain material definition 

according to [21], the L/1500 magnitude has been considered as imperfection amplitude for the parametric study. Local 

initial imperfections were also included with amplitudes predicted from the modified Dawson and Walker model [28] 

proposed by Gardner and Nethercot [29]. 

The parametric study focus primarily on ferritic stainless steel, although results are also presented for austenitic and 

duplex grades. Material properties were obtained from the results reported in [4] for ferritics, while those used in the 

parametric study by [5] were considered for austenitic and duplex stainless steels. The most relevant material parameters 

are presented in Table 2 where E is the Young’s modulus, 0.2 is the proof stress corresponding to 0.2% plastic strain, u 

is the tensile strength and u is the corresponding ultimate strain. Strain hardening exponents n and m are also provided. 

The stress-strain curves used for the numerical analyses were obtained using the stress-strain curve formulation presented 

in Arrayago et al. [30] in combination with the parameters shown in Table 2. 

  



 

Paper presented by Itsaso Arrayago - itsaso.arrayago@upc.edu 

© Arrayago I, Real Esther, Mirambell E, UPC & Gardner L, Imperial College London 5 

Table 2 Material parameter definition for parametric studies 

Stainless steel 
E 

[GPa] 

0.2 

[MPa] 

u 

[MPa] 

u 

[%] 
n m 

Austenitic 197.8 417 651 35.9 5.5 3.7 

Ferritic 185.7 490 533 4.8 11.0 3.2 

Duplex 201.3 707 874 19.1 5.6 4.9 

 
The parametric study on stainless steel members comprised a variety of different RHS and SHS, whose minor axis flexural 

buckling behaviour was investigated, and where all models were defined according to the general assumptions described 

in the previous section. Stocky RHS and SHS cross-sections with aspect ratios h/b equal to 1, 1.2, 1.5 and 2 were 

considered, with thicknesses ranging between 2 mm and 4 mm and modelling different slendernesses, ranging from 0.25-

0.75, for each cross-section. 

4 The Continuous Strength Method for Members in Compression: New Approach 

The Continuous Strength Method (CSM) provides excellent resistance predictions of stocky cross-sections, as it accounts 

for strain hardening effects and provides a direct and easy procedure to account for local buckling effects in slender cross-

sections, avoiding the calculation of effective cross-section properties. However, the method is limited to cross-sectional 

resistance predictions in its current definition.  

The failure of slender stainless steel columns occurs at low stresses since the applied load reaches the elastic critical force 

for flexural buckling before the axial stress exceeds the 0.2% proof stress, or even below the proportional limit of the 

material. However, for relatively short columns, the axial stress will potentially exceed the yield strength as the member 

is stable enough to allow partial yielding of the cross-section, especially for members with stocky cross-sections. The 

resistance prediction of these short columns is therefore usually underestimated since equations currently codified in 

standards do not account for strain hardening effects, and therefore, a new CSM-based approach is proposed for stainless 

steel RHS and SHS columns. 

4.1 Flexural buckling in standards 

Traditional design methods for column behaviour provided in different standards, such as EN 1993-1-4 [1] and 

AS/NZS4673 [2], are based on the Ayrton-Perry buckling formulation established in EN 1993-1-1 [12] for carbon steel 

members, where the column strength is determined by reducing the cross-section squash load due to flexural buckling 

effects, as in Eq. (6). M1 is the partial factor for resistance of members to instability and 𝜆̅ = √𝑁𝑐,𝑅𝑘 𝑁𝑐𝑟⁄  is the member 

slenderness, calculated from the cross-sectional compression resistance Nc,Rk and the elastic flexural buckling load of the 

column Ncr. 

The reduction factor  is calculated from the corresponding buckling curve as in Eqs. (7) and (8) and depends on the 

considered standard or alternative approach. The buckling curve codified in EN 1993-1-4 [1] corresponds to the buckling 

curve c for all stainless steel hollow sections, with 𝜂 = 𝛼(𝜆̅ − 𝜆̅0), 𝛼 = 0.49 and 𝜆̅0 = 0.4, while AS/NZS4673 [2] is 

based on a nonlinear generalised imperfection factor 𝜂 = 𝛼 [(𝜆̅ − 𝜆1̅)
𝛽
− 𝜆̅0] and provides different buckling curves for 

several stainless steel grades through the 𝛼, 𝛽, 𝜆̅0 and 𝜆1̅ parameters. 

 

𝑁𝑏,𝑅𝑑 =
𝜒𝑁𝑐,𝑅𝑘
𝛾𝑀1

 (6) 

𝜒 =
1

𝜙 + √𝜙2 − 𝜆2̅
≤ 1 

(7) 

𝜙 = 0.5 · [1 + 𝜂 + 𝜆2̅] (8) 

AS/NZS4673 [2] also allows the use of the tangent modulus approach in the prediction of the flexural buckling resistance, 

where the nonlinear stress-strain response of the material is considered by allowing a gradual yielding through the use of 

the tangent modulus Et corresponding to the buckling stress. However, since the calculation of this tangent modulus 

involves an iterative design procedure and the method does not consider member imperfections, the tangent modulus 

approach has not been analysed in this paper.  

  



 

Paper presented by Itsaso Arrayago - itsaso.arrayago@upc.edu 

© Arrayago I, Real Esther, Mirambell E, UPC & Gardner L, Imperial College London 6 

Recent reliability analyses by Afshan et al. [31] on the flexural buckling curve codified in EN 1993-1-4 [1] for stainless 

steel RHS and SHS columns demonstrated that the partial safety factors M1 derived exceeded the recommended value of 

1.1, indicating that lower buckling curves might be required. It was also found out that different bucking curves were 

necessary for the different stainless steel grades. These revised curves are similar to buckling curve c, since they adopt 

the same imperfection factor 𝛼 = 0.49 for all stainless steels, but consider different limiting slendernesses, 𝜆̅0 = 0.3 for 

austenitic and duplex stainless steel alloys and 𝜆̅0 = 0.2 for ferritics. The revised buckling curves have already been 

included in the Fourth Edition of the Design Manual for Structural Stainless Steel [10]. 

4.2 Development of the Continuous Strength Method approach for columns 

The new CSM-based approach proposed in this paper for columns has been developed using an analytic approach in order 

to obtain a consistent and complete proposal extendable to any cross-section or material. For this, a pin-ended column is 

considered, with a half sine-wave initial geometrical imperfection with magnitude e0, subjected to an axial compression 

load. From the classical elastic flexural equilibrium equation accounting for initial geometrical imperfections, a second 

order in-plane elastic check of the most heavily loaded cross-section on the member (at mid-span section) becomes: 

𝑁𝑏,𝑅𝑑
𝑁𝑐,𝑅𝑑

+
1

(1 −
𝑁𝑏,𝑅𝑑
𝑁𝑐𝑟

)

𝑁𝑏,𝑅𝑑 · 𝑒0
𝑀𝑐,𝑅𝑑

= 1 
(9) 

where Nc,Rd and Mc,Rd are the cross-sectional compression and bending moment resistances, Ncr is the elastic critical 

buckling load of the member and Nb,Rd is the axial compressive load that causes the failure of the column, which can be 

considered the flexural buckling resistance of the member. For simplicity, all safety factors will be considered equal to 

one in the development of the new approach and the different assessments presented in the following sections. According 

to EN 1993-1-4 [1], Nc,Rd and Mc,Rd are limited to the yield strength regardless of the slenderness of cross-sections, without 

allowing any strain hardening considerations. On this basis, the compression and bending moment resistances according 

to the CSM given in Eqs. (3) and (4) can be adopted in Eq. (9) to allow enhanced material properties to be included in the 

formulation, as in Eq. (10), where Nb,CSM is the flexural buckling resistance of column according to the CSM approach. 

𝑁𝑏,𝐶𝑆𝑀
𝑁𝐶𝑆𝑀

+
1

(1 −
𝑁𝑏,𝐶𝑆𝑀
𝑁𝑐𝑟

)

𝑁𝑏,𝐶𝑆𝑀 · 𝑒0
𝑀𝐶𝑆𝑀

= 1 
(10) 

Considering that 𝜎𝑏,𝐶𝑆𝑀 = 𝑁𝑏,𝐶𝑆𝑀 𝐴⁄ , 𝜎𝐶𝑆𝑀 = 𝑁𝐶𝑆𝑀 𝐴⁄  and 𝜎𝑐𝑟 = 𝑁𝑐𝑟 𝐴⁄ , Eq. (10) can be re-written in terms of stresses, 

as for Eq. (11), adopting the auxiliary function 𝑓∗ defined in Eq. (12), where 𝑓 corresponds to the ratio between the CSM 

and plastic bending moment capacities, calculated from Eq. (4), 𝑓 = 𝑀𝐶𝑆𝑀 𝑀𝑝𝑙⁄ . Note that CSM corresponds to the cross-

sectional compression strength while b,CSM stands for the flexural buckling failure stress. 

𝜎𝑏,𝐶𝑆𝑀
𝜎𝐶𝑆𝑀

+
1

(1 −
𝜎𝑏,𝐶𝑆𝑀
𝜎𝑐𝑟

)

𝜎𝑏,𝐶𝑆𝑀 · 𝑒0
𝑊𝑝𝑙

𝐴
𝜎𝐶𝑆𝑀 · 𝑓

∗

= 1 (11) 

𝑓∗ = 𝑓
𝜎0.2
𝜎𝐶𝑆𝑀

 (12) 

Operating on Eq. (11) and assuming a new auxiliary function 𝑔 = 𝑓∗𝜓, where 𝜓 = 𝑊𝑝𝑙 𝑊𝑒𝑙⁄  is the shape factor of the 

cross-section, Eq. (13) can be derived. This expression is the same Ayrton-Perry considered in the traditional flexural 

buckling approach, but with a different generalized imperfection parameter 𝜂∗. Introducing the slenderness plateau 𝜆̅0 

and adopting the non-dimensional member slenderness 𝜆̅ = 𝜆 𝜆𝐸⁄  and the following relationships 𝛾 = 𝐿 𝑒0⁄ ,   𝜆 = 𝐿 𝑖⁄ , 

𝑖2 = 𝐼 𝐴⁄ , 𝑊𝑒𝑙 = 𝐼 𝑣⁄ , the modified generalized imperfection factor can be expressed as in Eq. (14), where 𝜂 is the 

generalized imperfection factor considered in the Ayrton-Perry formulation adopted in the Eurocode. In these expressions 

𝜆𝐸 is the Euler’s slenderness, L is the length of the column, I is the relevant second moment of area, A is the gross-section 

area and v is the distance from neutral axis to extreme fibres.  

(𝜎𝐶𝑆𝑀 − 𝜎𝑏,𝐶𝑆𝑀) · (𝜎𝑐𝑟 − 𝜎𝑏,𝐶𝑆𝑀) = 𝜎𝑏,𝐶𝑆𝑀 · 𝜎𝑐𝑟 · 𝜂
∗ with  𝜂∗ =

𝑒0·𝐴

𝑊𝑒𝑙·𝑔
 (13) 

𝜂∗ =
𝛼

𝑔
(𝜆̅ − 𝜆̅0) =

1

𝑔
𝛼(𝜆̅ − 𝜆̅0) =

1

𝑔
𝜂   with   𝛼 =

𝜋√𝐸 𝜎0.2⁄

𝛾·
𝑖

𝜈

 (14) 

From Eq. (13), and considering 𝜒𝐶𝑆𝑀 =
𝜎𝑏,𝐶𝑆𝑀

𝜎𝐶𝑆𝑀
 , 𝜎𝑐𝑟 =

𝜎𝐶𝑆𝑀

𝜆2
, 
𝜎𝑏,𝐶𝑆𝑀

𝜎𝑐𝑟
= 𝜒𝐶𝑆𝑀 · 𝜆

2̅, Eq. (15) can be derived, whose smallest 

root corresponds to the reduction factor 𝜒𝐶𝑆𝑀  that provides the CSM flexural buckling resistance using Eqs. (16)-(19). 

Finally, the CSM flexural buckling resistance Nb,CSM can be calculated from Eq. (19). 

𝜒𝐶𝑆𝑀
2 · 𝜆2̅ − 𝜒𝐶𝑆𝑀[1 + 𝜂

∗ + 𝜆2̅] + 1 = 0 (15) 
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𝜒𝐶𝑆𝑀 =
1

𝜙𝐶𝑆𝑀 + √𝜙𝐶𝑆𝑀
2 − 𝜆2̅

 
(16) 

𝜙𝐶𝑆𝑀 = 0.5 · [1 + 𝜂∗ + 𝜆2̅] (17) 

𝜂∗ =
1

𝑔
𝛼(𝜆̅ − 𝜆̅0) =

𝜎𝐶𝑆𝑀𝑊𝑒𝑙

𝑀𝐶𝑆𝑀

𝛼(𝜆̅ − 𝜆̅0) (18) 

𝑁𝑏,𝐶𝑆𝑀 =
𝜒𝐶𝑆𝑀 · 𝑁𝐶𝑆𝑀

𝛾𝑀1
 (19) 

The proposed CSM approach for flexural buckling resistance defined through Eqs. (16)-(19) is equivalent to the traditional 

approach for columns codified in different standards [1-3,12] described in Section 4.1, considering a different generalized 

imperfection parameter 𝜂∗, but still based on the flexural buckling curve concept through parameters  and 𝜆̅0. This 

imperfection parameter depends on the cross-sectional slenderness and considered material, since the CSM strength CSM 

and bending moment capacity MCSM are needed in its definition. Hence, for columns with stocky cross-sections strain 

hardening effects are directly introduced in the formulation. According to the proposed formulation, stocky cross-sections 

with materials showing high strain hardening provide lower generalised imperfection values and therefore, higher 

predicted column resistances.  

On the other hand, the prediction of the flexural buckling resistance of columns with slender cross-sections (showing 

𝜆𝑝̅̅ ̅ > 0.68) need to account for resistance reductions due to local buckling instead of strain hardening effects. As for 

cross-sections, this reduction can be considered through the traditional effective width method calculating the effective 

cross-section area, but also from the CSM strength curve defined in Eq. (1b). This second procedure is more direct, 

simpler and based on gross-sectional properties. The proposed CSM approach can be easily extended to columns showing 

slender cross-sections by adopting the auxiliary function 𝑔 = 1, which is equivalent to considering the procedure codified 

in EN 1993-1-4 [1] with fully effective cross-section properties. The local buckling effects can be then introduced through 

the strength curve as in Eq. (20), where Nb,0 is the flexural buckling resistance of the fully effective cross-section. In this 

expression, the cross-section slenderness might be calculated from Eq. (2), although a more adequate cross-section 

slenderness 𝜆𝑝̅̅ ̅ definition needs to be adopted in order to obtain a better prediction of the column resistance. This new 

definition, given in Eq. (21), is equivalent to the l slenderness defined in the AISI-S100-16 Specification [32] for flexural-

local buckling interaction according to the Direct Strength Method approach, which guarantees a good estimation of the 

susceptibility of cross-sections to local buckling. In its definition, the flexural buckling resistance of the fully effective 

cross-section Nb,0 is considered instead of the cross-section squash load, as well as the elastic critical local buckling load 

under compression Ncrl. 

𝑁𝑏,𝐶𝑆𝑀
𝑁𝑏,0

=
1

𝜆̅𝑝
1.05

(1 −
0.222

𝜆̅𝑝
1.05

) (20) 

𝜆̅𝑝 = √
𝑁b,0
𝑁𝑐𝑟,𝑙

 (21) 

Figures 2-4 present the equivalent buckling curves obtained with the new CSM approach for austenitic, ferritic and duplex 

stainless steel alloys, respectively, for four different cross-section slenderness values. Curves corresponding to RHS and 

SHS with low, medium and high cross-section slenderness values are presented. Stocky and slender sections are included, 

together with the flexural buckling curve c codified in EN 1993-1-4 [1] for stainless steel hollow sections, for comparison. 

It is evident from Figures 2-4 that for a given material the highest flexural buckling curves are obtained for those cross-

sections showing the lowest cross-section slenderness 𝜆𝑝̅̅ ̅, obtaining higher predicted column resistances. In addition, it 

can be observed that buckling curves are higher for those materials for which strain hardening effects are more evident, 

obtaining higher flexural buckling curves for austenitic stainless steel alloys than for duplex and ferritics. 
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Fig. 2 Buckling curves corresponding to RHS with different slenderness for austenitic stainless steel 

according to the new CSM approach 

 

 
Fig. 3 Buckling curves corresponding to RHS with different slenderness for ferritic stainless steel according 

to the new CSM approach 

 

 
Fig. 4 Buckling curves corresponding to RHS with different slenderness for duplex stainless steel according 

to the new CSM approach 
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The purely analytic nature of the proposed approach offers a number of advantages. First, the currently codified design 

procedure based on flexural buckling curves is followed, without the need of introducing new methodologies. The second 

and most relevant advantage is that the approach can be used for all materials and cross-section types for which the CSM 

has been defined, including stainless steel, carbon steel and aluminium Square and Rectangular Hollow Sections, I-

sections, Circular Hollow Sections. Moreover, as the definition of the most adequate flexural buckling curve changes in 

view of new research for each cross-section and materials, the approach will be always applicable. Finally, the better 

estimation of the flexural buckling behaviour of columns (together with the correct bending moment capacity prediction) 

will have a direct impact on the accuracy of beam-column design, since the estimation of the end points is key in the 

assessment of these members together with the correct interaction equation. 

5 Assessment of the CSM Approach for Columns with Stocky Cross-section  

The assessment of the proposed new CSM approach for stainless steel columns is presented in this section by comparing 

the predicted flexural buckling resistances with experimental and numerical strengths presented in section 3. Note that 

although the proposed approach is applicable to a number of materials and cross-section shapes for which the CSM has 

been developed, this paper only covers the assessment of RHS and SHS sections, which are the most commonly used 

stainless steel cross-sections. The assessment of the new CSM method is presented separately for columns with stocky 

and slender cross-sections and specimens showing cross-section slenderness lower that the CSM limit 𝜆𝑝̅̅ ̅ ≤ 0.68 for 

strain hardening considerations are considered in this section. Results are also compared to resistance predictions obtained 

from the codified expressions that do not consider strain hardening effects to evaluate the improvement of the new 

formulation.  

Figure 5 shows the variation of the auxiliary function 𝑔 = 𝑀𝐶𝑆𝑀 (𝜎𝐶𝑆𝑀⁄ 𝑊𝑒𝑙) against the cross-section slenderness 𝜆𝑝̅̅ ̅ for 

the different cross-sections and materials considered in this study. Note that since the generalized imperfection factor 𝜂∗ 
decreases with increasing values of 𝑔, lower generalised imperfection values are obtained for stocky cross-sections with 

low 𝜆𝑝̅̅ ̅ slenderness values. In the limit, for 𝜆𝑝̅̅ ̅ = 0.68, function 𝑔 equals the unity and the modified buckling curve 

corresponds to the traditional curve. 

 

 

 

Fig. 5 Auxiliary function g, correction factor for the modified generalised imperfection factor 

The accuracy of the CSM for columns has been assessed for several flexural buckling curves since the proposed 

methodology can be applied to different buckling curves through parameters  and 𝜆̅0. In addition to the buckling curve 

c currently codified in EN 1993-1-4 [1], the revised buckling curves for stainless steel RHS and SHS proposed by Afshan 

et al. [31] have also been analysed.  

Figures 6 and 7 present the assessment of the CSM approach for columns with stocky cross-sections. In these figures, 

predicted-to-experimental (or FE) ratios are plotted against the corresponding member slenderness (a-figures) or cross-

sectional slenderness (b-figures). The flexural buckling curve codified in EN 1993-1-4 [1] is considered in Figure 6 and 

the revised curves in Figure 7, for austenitic, ferritic and duplex stainless steel columns. Cross-section slenderness values 

have been calculated from Eq. (2), in which the elastic critical local buckling stress crl has been obtained from CUFSM 

(Schafer and Ádány [33]) calculations for pure compression. From these figures, it can be seen that the prediction of column 

resistances is improved when the proposed CSM method is considered regardless the considered buckling curve.  

Cross-section slenderness λ𝑝̅̅ ̅ 

 

g =
𝑀
𝐶
𝑆
𝑀
( 𝜎
𝐶
𝑆
𝑀
·
𝑊
𝑒
𝑙)

⁄
 



 

Paper presented by Itsaso Arrayago - itsaso.arrayago@upc.edu 

© Arrayago I, Real Esther, Mirambell E, UPC & Gardner L, Imperial College London 10 

 
 

 

Fig. 6 Assessment of the proposed CSM approach for columns with stocky cross-section considering the 

flexural buckling curve codified in EN 1993-1-4 [1] 
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Fig. 7 Assessment of the proposed CSM approach for columns with stocky cross-section considering the 

revised flexural buckling curves proposed in Afshan et al. [31] 

Results derived from the expressions that do not account for strain hardening effects [1,31] are compared with those obtained 

for the proposed CSM approach for the different buckling curves studied in order to evaluate the improvement introduced 

by the new method and to identify the most appropriate design approach. Table 3 presents the mean and COVs of the 

predicted-to-experimental (or FE) ratios for the considered flexural buckling approaches, with and without including 

strain hardening effects. Nb,EN/Nu refers to the buckling curve codified in [1], while for the revised buckling curves proposed 

by [31] Nb,rev/Nu is used. Results corresponding to the CSM approach and accounting for strain hardening effects based on 

the previous flexural buckling curves are also presented, Nb,CSM,EN/Nu and Nb,CSM,rev/Nu.  

 

Table 3 Assessment of design approaches for members in compression with stocky cross-sections 

Grade 
 CSM approach No strain hardening 

 Nb,CSM,EN/Nu Nb,CSM,rev/Nu Nb,EN/Nu Nb,rev/Nu 

Austenitic 
Mean 0.94 0.91 0.88 0.85 

COV 0.123 0.114 0.113 0.104 

Ferritic 
Mean 0.92 0.88 0.87 0.83 

COV 0.076 0.067 0.075 0.066 

Duplex 
Mean 0.91 0.88 0.87 0.84 

COV 0.066 0.065 0.064 0.062 

All 
Mean 0.92 0.89 0.87 0.83 

COV 0.083 0.075 0.080 0.072 

 

Table 3 demonstrates that the proposed CSM approach provides improved predictions of the resistance of stainless steel 

RHS and SHS columns for all considered buckling curves since higher Nb,pred/Nu ratios, with similar scatter, are obtained. 

The consideration of the enhanced material properties in the prediction of the ultimate capacity of stainless steel columns 

with stocky cross-sections improves the obtained results for all stainless steel grades, although more relevant 

improvements are obtained for austenitic specimens than for duplex and ferritics. In accordance to Table 3, best results 

are observed for the buckling curve codified in EN 1993-1-4 [1] when strain hardening effects are included, although the 

corresponding reliability analyses presented in Section 7 should also be considered before any conclusion and 

recommendation are derived. 

6 Assessment of the CSM Approach for Columns with Slender Cross-section 

According to the review presented in Section 2, recent research works extended the CSM also to slender cross-sections, 

where local buckling effects in cross-sectional resistance are directly considered through a strength curve, avoiding the 

calculation of effective widths. This section presents the assessment of this approach when applied to stainless steel 

columns showing cross-section slenderness higher that the CSM limit 𝜆𝑝̅̅ ̅ ≥ 0.68. In the assessment, cross-section 

slenderness values have been calculated from Eq. (21), in which the elastic critical local buckling load cr,l has also been 

obtained from CUFSM calculations. As for previous section, the buckling curve currently codified in EN 1993-1-4[1] and 

the revised curves for stainless steel RHS and SHS proposed by Afshan et al. [31] have been analysed. 

Cross-section  slenderness λ𝑝̅̅ ̅ 
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Results calculated using the CSM approach have been compared to the resistance predictions obtained from the codified 

expressions by means of the effective width method with the revised cross-sectional limits currently given in        EN 1993-

1-4 [1], which were proposed by Gardner and Theofanous [34]. Table 4 presents the mean and COVs of the predicted-to-

experimental (or FE) ratios for the considered flexural buckling curves [1,31]. It is evident from these results that the CSM 

approach for stainless steel columns with slender RHS and SHS sections provides similar results and lower scatter to 

those obtained using the codified effective width method, as mentioned in Section 2. However, the CSM is simpler and 

easier to use since no effective width calculations are required, maintaining a similar level accuracy.  

Table 4 Assessment of design approaches for members in compression with slender cross-sections 

Grade 
 CSM approach Effective width method 

 Nb,CSM,EN/Nu Nb,CSM,rev/Nu Nb,EN/Nu Nb,rev/Nu 

Austenitic 
Mean 0.88 0.86 0.94 0.91 

COV 0.094 0.090 0.114 0.107 

Ferritic 
Mean 0.84 0.80 0.87 0.81 

COV 0.092 0.093 0.114 0.125 

Duplex 
Mean 0.84 0.82 0.90 0.87 

COV 0.069 0.071 0.114 0.115 

All 
Mean 0.85 0.81 0.89 0.84 

COV 0.090 0.093 0.118 0.127 

 
Similar conclusions can be drawn from Figures 8 and 9, where the results corresponding to the assessment of the CSM 

approach for stainless steel slender RHS and SHS sections are presented. In these figures, predicted-to-experimental (or 

FE) ratios are plotted against the corresponding member slenderness (a-figures) and against cross-sectional slenderness 

(b-figures), calculated from Eq. (21). Member slendernesses relative to CSM provisions have been adopted in a-figures, 

calculated from the gross-section properties of the cross-sections, although results corresponding to EN 1993-1-4 [1] have 

been predicted through the effective member slendernesses. Figure 8 reports results corresponding to the flexural buckling 

curve codified in EN 1993-1-4 [1], while Figure 9 considers the revised curves by [31]. These figures show the existence 

of some unsafe predictions corresponding to both buckling curves, explaining the higher predicted-to-experimental (or 

FE) ratios and scatter for the effective width approach, being this fact more evident for the buckling curve codified in 

EN 1993-1-4 [1].  

 

a)  Member slenderness λ̅ 
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b)  

Fig. 8 Assessment of the proposed CSM approach for columns with slender cross-section considering the 

flexural buckling curve codified in EN 1993-1-4 [1] 

 

a)  

b)  

Fig. 9 Assessment of the proposed CSM approach for columns with slender cross-section considering the 

revised flexural buckling curves proposed in Afshan et al. [31] 

7 Reliability Analysis  

The reliability of the proposed CSM approach for columns is assessed through the corresponding statistical analyses for 

stainless steel RHS and SHS columns for the considered flexural buckling curves [1,31]. The statistical calibration of the 

proposed approach has been derived according to EN 1990, Annex D [35] specifications, where the statistical parameters 

corresponding to the material and geometrical variations of the different stainless steel grades have been extracted from 

Afshan et al. [36]. The considered material overstrength ratios are 1.3 for austenitic stainless steel, 1.2 for ferritics and 1.1 

Cross-section slenderness λ𝑝̅̅ ̅ 
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for duplex and lean duplex grades, with COVs equal to 0.060, 0.045 and 0.030 respectively, and the COV of the geometric 

properties was taken as 0.050.  

The statistical analyses of the new approach for stainless steel RHS and SHS columns were derived according to EN 1990, 

Annex D [35] following the steps described in Tankova et al. [37] and the summary of the most relevant parameter values 

are presented in Table 5 and Table 6 for stocky and slender cross-sections, respectively. In this Table, b is the mean value 

of the correction factor, V is the coefficient of variation of the errors of each approach relative to the experimental results 

and Vr is the combined coefficient of variation. 

 

Table 5 Summary of the reliability analysis results for the CSM approach for members in compression with 

stocky cross-section 

 Grade b V Vr M1 

EN 1993-1-4 [1] 
buckling curve 

Austenitic 1.113 0.122 0.145 1.08 

Ferritic 1.035 0.074 0.100 1.10 

Duplex 1.126 0.066 0.089 1.03 

Revised buckling 
curves [31] 

Austenitic 1.143 0.113 0.138 1.03 

Ferritic 1.101 0.066 0.094 1.01 

Duplex 1.178 0.066 0.088 0.99 

 

Table 6 Summary of the reliability analysis results for the CSM approach for members in compression with 

slender cross-section 

 Grade b V Vr M1 

EN 1993-1-4 [1] 

buckling curve 

Austenitic 1.102 0.097 0.125 1.08 

Ferritic 1.205 0.091 0.113 1.02 

Duplex 1.194 0.069 0.090 0.99 

Revised buckling 
curves [31] 

Austenitic 1.136 0.092 0.121 1.03 

Ferritic 1.280 0.089 0.112 0.95 

Duplex 1.236 0.073 0.093 0.97 

 
According to the results gathered in Table 5 and Table 6, the proposed CSM approach for stainless steel columns 

subjected to compression can be safely applied for stocky and slender cross-sections, and for the different grades 

considered, since the calculated M1 values lay below the partial safety factor M1 currently codified in EN 1993-1-4 [1], 

equal to 1.10.  

8 Conclusions 

This paper presents a new design approach for the flexural buckling resistance of stainless steel columns based on the 

Continuous Strength Method (CSM). Limited to cross-sectional behaviour, the CSM provides excellent resistance 

predictions for stocky cross-sections as strain hardening effects are included, as well as for slender cross-sections, where 

effective width calculations are avoided. The new approach presented in this paper extends the CSM to member behaviour 

and allows considering strain hardening and local buckling effects for stainless steel RHS and SHS columns. The proposed 

approach is equivalent to the traditional approach for columns codified in standards based on the Ayrton-Perry 

formulation but considers a different generalised imperfection parameter that depends on the cross-sectional slenderness 

and considered material, introducing strain hardening effects directly in the formulation. Since the proposed procedure is 

based on a certain buckling curve, the flexural bucking curve codified in EN 1993-1-4[1] and the revised curves proposed 

by Afshan et al. [31] have been analysed in this paper. The assessment of experimental and numerical results showed that 

the proposed CSM approach provides improved predictions of the resistance of RHS and SHS columns with stocky cross-

sections. Regarding columns with slender cross-sections, the CSM approach demonstrated to provide similar results to 

the codified effective width method, but being a simpler design process. The reliability of the proposed approach has been 

finally demonstrated through the corresponding statistical analyses, and the best results were observed for the buckling 

curve codified in EN 1993-1-4 [1]. 

Given the purely analytic nature of the proposed approach, it can be used for several materials, such as stainless steel, 

carbon steel and aluminium, and cross-section types for which the CSM has been defined. Finally, the better estimation 

of the flexural buckling behaviour of columns will have a direct impact on the accuracy of beam-column checks, since 

the adoption of accurate end points is as important as having an adequate interaction expression. However, further research 
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is needed in order to assess the applicability of the proposed method to beam-columns, and also to extend the formulation 

to other cross-section shapes and materials. 
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