Mechanical Properties of Ferritic Stainless Steels at Elevated Temperature
Timo Manninen, Jukka Säynäjäkangas
December 6-7, 2012 Ascot, UK
Contents

1. Introduction
2. Experimental Investigation
3. Results
4. Conclusions
Ferritic Stainless Steels

- Low-cost, price stable, corrosion resistant steels
- Immune for stress corrosion cracking
- Widely used for household appliances, kitchenware, architecture (facades) and automotive exhaust systems
- Structural applications in the construction industry scarce
The Family Tree of Ferritic Grades

- **EN 1.4016**
 - ASTM 430
- **EN 1.4003**
 - ASTM S40977
- **EN 1.4512**
 - AISI 430Ti
- **EN 1.4510**
 - AISI 430Ti
- **EN 1.4511**
 - ASTM 430
- **EN 1.4512**
 - ASTM 409
- **EN 1.4513**
 - ASTM 434
- **EN 1.4511**
 - ASTM 434
- **EN 1.4521**
 - ASTM 444
- **EN 1.4592**
 - AISI 447

Corrosion resistance: ~11% Cr / ~16% Cr / ~17% / ~18% Cr / ~17% / ~20% Cr / ~30% Cr

Design guidance in the Eurocode
Fire Safety Design of Stainless Steel

• Past work on stainless steel focused on austenitic and duplex grades

• Only the low alloyed structural steel 1.4003 currently included in EN 1993-1-2

• Behaviour of medium and high chromium grades at fire temperature largely unknown
Purpose of the Present Work

- Derive the strength retention factors for ferritic stainless steel grades 1.4016, 1.4509, 1.4521 and 1.4621 in the temperature range between +20°C and +1000°C
- Medium and high chromium grades with corrosion properties comparable to standard austenitic grades
- Using material from at least two producers; cold-rolled material in annealed condition (2B)
Experimental Test Programme

• Steady state tests
 • 1.4003, 1.4016, 1.4509, 1.4521 and 1.4621
 • Between 20°C and 1000°C
 • 1.4003 included as a reference material

• Transient state tests on two grades 1.4509 and 1.4521
 • 16 load levels between 10% and 90% of yield stress
 • Heating rate of 10°C/min
Materials

<table>
<thead>
<tr>
<th>Grade</th>
<th>Supplier</th>
<th>Type</th>
<th>Identifier</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Nb</th>
<th>Cu</th>
<th>Al</th>
<th>N</th>
<th>KFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4003</td>
<td>B</td>
<td>2B</td>
<td>4003-1</td>
<td>0.015</td>
<td>0.26</td>
<td>1.45</td>
<td>11.4</td>
<td>0.4</td>
<td>0</td>
<td>0.00</td>
<td>0.01</td>
<td>0.1</td>
<td>0.00</td>
<td>0.013</td>
<td>7.4</td>
</tr>
<tr>
<td>1.4016</td>
<td>A</td>
<td>2B</td>
<td>4016-1</td>
<td>0.023</td>
<td>0.36</td>
<td>0.46</td>
<td>16.3</td>
<td>0.2</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.1</td>
<td>0.01</td>
<td>0.028</td>
<td>14.8</td>
</tr>
<tr>
<td>1.4016</td>
<td>B</td>
<td>2B</td>
<td>4016-2</td>
<td>0.046</td>
<td>0.30</td>
<td>0.48</td>
<td>16.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.00</td>
<td>0.02</td>
<td>0.1</td>
<td>0.00</td>
<td>0.027</td>
<td>14.1</td>
</tr>
<tr>
<td>1.4509</td>
<td>A</td>
<td>2B</td>
<td>4509-1</td>
<td>0.017</td>
<td>0.55</td>
<td>0.45</td>
<td>17.8</td>
<td>0.2</td>
<td>0</td>
<td>0.14</td>
<td>0.49</td>
<td>0.0</td>
<td>0.05</td>
<td>0.018</td>
<td>19.3</td>
</tr>
<tr>
<td>1.4509</td>
<td>B</td>
<td>2B</td>
<td>4509-2</td>
<td>0.020</td>
<td>0.55</td>
<td>0.48</td>
<td>17.9</td>
<td>0.3</td>
<td>0</td>
<td>0.12</td>
<td>0.40</td>
<td>0.1</td>
<td>0.01</td>
<td>0.030</td>
<td>18.4</td>
</tr>
<tr>
<td>1.4521</td>
<td>A</td>
<td>2B</td>
<td>4521-1</td>
<td>0.011</td>
<td>0.48</td>
<td>0.44</td>
<td>17.7</td>
<td>0.3</td>
<td>2.0</td>
<td>0.17</td>
<td>0.43</td>
<td>0.1</td>
<td>0.00</td>
<td>0.016</td>
<td>26.6</td>
</tr>
<tr>
<td>1.4521</td>
<td>B</td>
<td>2B</td>
<td>4521-2</td>
<td>0.015</td>
<td>0.52</td>
<td>0.49</td>
<td>18.0</td>
<td>0.1</td>
<td>2.0</td>
<td>0.13</td>
<td>0.40</td>
<td>0.2</td>
<td>0.01</td>
<td>0.019</td>
<td>27.3</td>
</tr>
<tr>
<td>1.4521</td>
<td>B</td>
<td>2B</td>
<td>4521-3</td>
<td>0.012</td>
<td>0.48</td>
<td>0.49</td>
<td>17.9</td>
<td>0.2</td>
<td>2.0</td>
<td>0.13</td>
<td>0.39</td>
<td>0.2</td>
<td>0.01</td>
<td>0.023</td>
<td>27.0</td>
</tr>
<tr>
<td>1.4621</td>
<td>C</td>
<td>2R</td>
<td>4621-1</td>
<td>0.014</td>
<td>0.21</td>
<td>0.23</td>
<td>20.6</td>
<td>0.2</td>
<td>0</td>
<td>0.01</td>
<td>0.45</td>
<td>0.4</td>
<td>0.00</td>
<td>0.014</td>
<td>19.7</td>
</tr>
</tbody>
</table>

KFF = Ferrite Factor

Stabilized grades. Precipitates formed by Ti and Nb improve creep properties and increase strength at elevated temperature
Materials

<table>
<thead>
<tr>
<th>Grade</th>
<th>Identifier</th>
<th>Thickness (mm)</th>
<th>Rp0,01 (N/mm²)</th>
<th>Rp0,1 N/mm²</th>
<th>Rp0,2 N/mm²</th>
<th>Rp1,0 N/mm²</th>
<th>Rt2,0 N/mm²</th>
<th>Rm N/mm²</th>
<th>Ag %</th>
<th>A80 %</th>
<th>A5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4003</td>
<td>4003-1</td>
<td>2.0</td>
<td>234</td>
<td>318</td>
<td>330</td>
<td>357</td>
<td>380</td>
<td>493</td>
<td>16.2</td>
<td>31.3</td>
<td>50.7</td>
</tr>
<tr>
<td>1.4016</td>
<td>4016-1</td>
<td>2.0</td>
<td>237</td>
<td>299</td>
<td>311</td>
<td>338</td>
<td>358</td>
<td>478</td>
<td>16.8</td>
<td>26.0</td>
<td>38.0</td>
</tr>
<tr>
<td>1.4016</td>
<td>4016-2</td>
<td>2.0</td>
<td>237</td>
<td>305</td>
<td>315</td>
<td>333</td>
<td>349</td>
<td>458</td>
<td>17.4</td>
<td>33.3</td>
<td>53.3</td>
</tr>
<tr>
<td>1.4509</td>
<td>4509-1</td>
<td>2.0</td>
<td>250</td>
<td>321</td>
<td>331</td>
<td>353</td>
<td>369</td>
<td>479</td>
<td>17.6</td>
<td>29.0</td>
<td>43.0</td>
</tr>
<tr>
<td>1.4509</td>
<td>4509-2</td>
<td>2.0</td>
<td>287</td>
<td>358</td>
<td>367</td>
<td>384</td>
<td>398</td>
<td>488</td>
<td>15.9</td>
<td>33.0</td>
<td>54.3</td>
</tr>
<tr>
<td>1.4521</td>
<td>4521-1</td>
<td>2.0</td>
<td>291</td>
<td>367</td>
<td>375</td>
<td>396</td>
<td>416</td>
<td>542</td>
<td>16.2</td>
<td>29.3</td>
<td>44.7</td>
</tr>
<tr>
<td>1.4521</td>
<td>4521-2</td>
<td>2.0</td>
<td>309</td>
<td>382</td>
<td>394</td>
<td>419</td>
<td>438</td>
<td>564</td>
<td>15.6</td>
<td>27.7</td>
<td>43.7</td>
</tr>
<tr>
<td>1.4521</td>
<td>4521-3</td>
<td>2.0</td>
<td>337</td>
<td>379</td>
<td>391</td>
<td>411</td>
<td>410</td>
<td>532</td>
<td>17.3</td>
<td>28.4</td>
<td>41.9</td>
</tr>
<tr>
<td>1.4621</td>
<td>4521-1</td>
<td>1.5</td>
<td>279</td>
<td>351</td>
<td>359</td>
<td>373</td>
<td>406</td>
<td>469</td>
<td>15.9</td>
<td>32.0</td>
<td>56.0</td>
</tr>
</tbody>
</table>

Considerable overstrength compared to minimum values in the material standard.
Test Equipment

- **Zwick 250 kN tensile testing machine**
- **Environmental chamber for temperatures up to 550°C**
- **High temperature furnace**
Side-entry Extensometer with Ceramic Sensor Arms & Specimen
Steady State Results for 1.4016

- Strength remains constant $200^\circ C \leq T \leq 500^\circ C$ due to dynamic strain aging.
- Steady state creep deformation at $T \geq 600^\circ C$. Associated with a rapid decrease of strength.
Steady State Results for 1.4509

- Dynamic strain aging almost negligible
- Steady state creep at $T \geq 750^\circ C$. Associated with a rapid decrease of strength
Reduction of Strength

Unstabilized Steel
1.4016

Stabilized Steel
1.4509

Steady State Creep

Steady State Creep
Reduction Factors for 0.2% Proof Stress

Unstabilized Grades
Reduction Factor for Ultimate Strength

Unstabilized Grades

Temperature [°C]

$k_{u,\theta}$
Degradation of Elastic Modulus

Present work

Values published by steel producers

Steady State Creep
Transient Test Results

![Graph showing strain vs. temperature for different percentages.](image-url)
Degradation of Strength

Yield strength diving at 800°C
Steady state vs. Transient

0.2% Proof Stress

Ultimate Tensile Strength
Proposal: All Unstabilized Grades
Proposal: All Stabilized Grades
Proposal: k2%, θ for All Grades

Stabilized

Unstabilized
Summary

• Mechanical properties of various ferritic stainless steels investigated at temperatures up to 1000°C.

• The studied steels could be divided in two groups based on their behaviour at elevated temperature.

 I. Unstabilized Grades
 1.4003, 1.4016

 II. Stabilized Grades
 1.4509, 1.4521, 1.4621

• Strength reduction factors were derived for both groups
• Stabilized grades perform better under fire conditions
Thank You!

www.outokumpu.com