COLD-WORKED AUSTENITIC STAINLESS STEELS (CWASS) IN PASSENGER RAILCARS AND IN OTHER APPLICATIONS

Stainless Steel in Structures:
Fourth International Experts Seminar
6-7 December 2012, Ascot, UK

Wladyslaw Jaxa-Rozen, P. Eng.
Bombardier Transportation – North America
AWS Committee on Structural Welding, S/C on Stainless Steel
CWASS in passenger railcars and in other applications

- INTRODUCTION
- PASSENGER CARS
 - HISTORY
 - MATERIALS
 - WELDING
 - DESIGN
 - FABRICATION
 - QUALITY
- OTHER APPLICATIONS
- CHALLENGES
- CONCLUSION
CWASS in passenger railcars and in other applications

Bombardier Overview

Corporate office based in Montréal, Canada

Workforce of 70 000 people worldwide

60 countries
76 sites

Revenues of $18.3 bn US

Listed on Toronto Stock Exchange (BBD)

For fiscal year ended January 31, 2011
CWASS in passenger railcars and in other applications

Joseph-Armand Bombardier (1907 – 1964)
Founder of Bombardier Inc.

© Joseph-Armand Bombardier Museum
CWASS in passenger railcars and in other applications

Auto-neige B-12 1941 Total of 7000 made

(Joseph-Armand Bombardier Museum)
CWASS in passenger railcars and in other applications

What have the snowmobiles to do with stainless steel railcars?

(Bombardier)

Ski-Doo MX Z-REV Edition 007 (James Bond - Die another day)
CWASS in passenger railcars and in other applications

From snowmobiles to railcars

Bombardier plant, La Pocatière, Québec, Canada
1974: Montréal subway contract for 423 cars
CWASS in passenger railcars and in other applications

Bombardier plant, La Pocatière, Québec, Canada
CWASS in passenger railcars and in other applications

Sunset over St-Lawrence River, La Pocatière, Québec, Canada

(Arnaud Munoz)
CWASS in passenger railcars and in other applications

Contract for 825 stainless steel subway cars for New York City: 1982
CWASS in passenger railcars and in other applications

Edward Gowan Budd (1870 – 1946)
Founder of Edward G. Budd Mfg. Co.

(Hagley Museum & Library)
CWASS in passenger railcars and in other applications

(Coachbuilt encyclopedia)
CWASS in passenger railcars and in other applications

Lafayette - self-propelled stainless steel rail vehicle on tires, 1932
CWASS applied 80 years ago
CWASS in passenger railcars and in other applications

“Shotweld”: short-time resistance spot welding process
CWASS in passenger railcars and in other applications

(Zephyr train)

(Hagley Museum & Library)
CWASS in passenger railcars and in other applications

Zephyr in production

(Hagley Museum & Library)
CWASS in passenger railcars and in other applications

(Hagley Museum & Library)
CWASS in passenger railcars and in other applications

Non-stop ride Denver – Chicago: 1633 km, average 124 km/h, max 181 km/h
Arrival at Chicago World’s Fair, May 26, 1934
CWASS in passenger railcars and in other applications
CWASS in passenger railcars and in other applications

Pullman, USA
CWASS in passenger railcars and in other applications

Japan 1962 (Budd’s license)
CWASS in passenger railcars and in other applications

Japan now
CWASS in passenger railcars and in other applications

India
CWASS in passenger railcars and in other applications

Australia: about 2000 stainless steel cars, 80% of the total passenger railstock
CWASS in passenger railcars and in other applications

Sweden
CWASS in passenger railcars and in other applications

Eurotunnel shuttle. The locomotive is of the standard size.
CWASS in passenger railcars and in other applications

The biggest wagons in the world.

(TML Link)
CWASS in passenger railcars and in other applications

MATERIALS

<table>
<thead>
<tr>
<th>Element % wt.</th>
<th>Stainless Steel Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allegheny (Budd) 18-8</td>
</tr>
<tr>
<td></td>
<td>304 (ref.) (1.4301)</td>
</tr>
<tr>
<td></td>
<td>301L (1.4318)</td>
</tr>
<tr>
<td></td>
<td>201LN (1.4371)</td>
</tr>
<tr>
<td>C</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>0,03</td>
</tr>
<tr>
<td>Cr</td>
<td>17,0 min</td>
</tr>
<tr>
<td></td>
<td>18,0-20,0</td>
</tr>
<tr>
<td></td>
<td>16,0-18,0</td>
</tr>
<tr>
<td></td>
<td>16,0-17,5</td>
</tr>
<tr>
<td>Ni</td>
<td>7,0 min</td>
</tr>
<tr>
<td></td>
<td>8,0-10,5</td>
</tr>
<tr>
<td></td>
<td>6,0-8,0</td>
</tr>
<tr>
<td></td>
<td>4,0-5,0</td>
</tr>
<tr>
<td>Mn</td>
<td>0,2-2,5</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>6,4-7,5</td>
</tr>
<tr>
<td>Si</td>
<td>0,2-1,5</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>Cu</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
</tr>
</tbody>
</table>

Maximum contents, unless otherwise specified.
CWASS in passenger railcars and in other applications

Mechanical Properties

Cold working: significant increase in strength;
ASTM A 666, EN 10088-2

Passenger railcars fabrication is the principal application area for CWASS.

Nickel Institute Publication 9014
CWASS in passenger railcars and in other applications

CWASS have a high strength-to-weight ratio = lightweight materials.

(Wikipedia)
CWASS in passenger railcars and in other applications

RB-1 Conestoga, PIMA Museum, Tucson, AZ
CWASS in passenger railcars and in other applications

RB-1 Conestoga, PIMA Museum, Tucson, AZ
CWASS in passenger railcars and in other applications

(Nickel Institute)

CWASS are strong and ductile = good crashworthiness
CWASS in passenger railcars and in other applications

WELDING PROCESSES

Resistance spot welding
Austenitic stainless steels: a perfect material for resistance welding:

- High electric resistivity
- Low thermal conductivity
- No gamma-alpha transformation – ductile welds and HAZ.

- Possibility of welding multiple combinations and large thicknesses

Total of 15.6 mm
CWASS in passenger railcars and in other applications

Equipment

Stationary - commercial
CWASS in passenger railcars and in other applications

Special equipment - large mobile gun for welding panels
CWASS in passenger railcars and in other applications

Gantry system for welding roof and side panels
CWASS in passenger railcars and in other applications

Electrodes

Material: alloyed copper
Large diameters, up to 25 mm
Spherical contact surface preferred
Regular cleaning and replacement

AWS C1.1 Specification
CWASS in passenger railcars and in other applications

QUALITY

Every weld is important.

General requirements:

- No nugget expulsion.
- Indentation: shallow and uniform.
- No heat tint at exposed surfaces.
CWASS in passenger railcars and in other applications

Welding Procedure Specifications

- Limits of nugget diameter, penetration and discontinuities.
- Qualification tests: tension, macros, chisel, torsion

Macrographic examination

Chisel test

Very strict production quality control

Tension-shear test
CWASS in passenger railcars and in other applications

ARC WELDING

- GMAW (MAG, 135); GTAW (TIG, 141; mostly arc spot welds)
- Limited application
- Stainless to stainless and stainless to HSLA steels joints
- No metallurgical problems
- Challenges:
 - Distortion
 - Heat tint
 - Viscous molten metal
- Low heat input required
CWASS in passenger railcars and in other applications

Fumes extraction (Cr_{vi})
CWASS in passenger railcars and in other applications

LASER WELDING: XXIst century technology

- Process at the beginning in railcars fabrication
- No more spot welds indentations, high speed
- Major paradigm shift in design and fabrication
- Important challenges
 - If it works: great success
 - If it doesn’t: major failure
DESIGN

Yield strength
Stainless steels:
A666/EN10088-2
- 515/500 MPa
- 700 MPa

HSLA steels:
up to 700 MPa

Weight
- St. Steel: 5-10 tons
- HSLA steel: 4-8 tons

Carbody tests:
- Compression
- Vertical load
- Diagonal jacking
- Hundreds of gauges

Nickel Institute publication 14025
CWASS in passenger railcars and in other applications

Strength of welds

Resistance spot welds
- Tensile-shear strength: AWS C1.1, AWS D17.2

Arc welds
- Undermatching strength
- Joints properties established through testing

Undermatch has always been there.
It is accounted for in stress analysis.
Not a major design challenge – butt joints in tension are rare.
CWASS in passenger railcars and in other applications

FABRICATION – primary parts

Cutting
- Straight cuts: guillotines
- Complex shapes: mostly laser, sometimes plasma

Bending and forming
- Easy bending and roll-forming even in cold worked condition (700 MPa yield: \(R = 2t \) in both directions)

Constant care
- Avoidance of contamination and scratches
CWASS in passenger railcars and in other applications

Nice clean shiny objects; one smaller, the other quite large...
CWASS in passenger railcars and in other applications
CWASS in passenger railcars and in other applications
CWASS in passenger railcars and in other applications

Welded HSS: TIG, laser, high frequency

Stalatube Oy
CWASS in passenger railcars and in other applications

Pekka Yrjölä, Finnish Constructional Steelwork Association, INSAPTRANS presentation / Stalatube Oy
CWASS in passenger railcars and in other applications

Longwood Gardens, Pennsylvania, USA/
Stalatube Oy
CWASS in passenger railcars and in other applications

Lighting poles, 201LN (1.4318), Millerbernd Mfg. Co., USA
CWASS in passenger railcars and in other applications

Beer keg: high-strength 304 (1.4301) Aperam
CWASS in passenger railcars and in other applications

Outokumpu/Nordic Tank
CWASS in passenger railcars and in other applications

Outokumpu/Briab
CWASS in passenger railcars and in other applications

ISO standard tank container, about 1800 kg of 316 steel
(Wikipedia and ref. Groth)
CWASS in passenger railcars and in other applications

The circumference of the fermenter: +/-100 m.
The upper ring: 316 (corrosive vapors).
CWASS, Re = 530 MPa instead of 275 MPa.
Quantity reduced from 17 ton to 11.5 ton.
Material cost reduced by 40%.

Aperam
CWASS in passenger railcars and in other applications

Ford Tudor 1936 (Wikipedia)
CWASS in passenger railcars and in other applications

1981 DeLorean DMC12 (Wikipedia)
CWASS in passenger railcars and in other applications

Modular Vehicle Frame, US Patent 5 882 064, Autokinetics, USA
Crashworthiness and cost: better than carbon steel body
CWASS in passenger railcars and in other applications

TORSIONAL STIFFNESS vs. MASS

STAINLESS STEEL FRAME

PRODUCTION VEHICLES

Modular Vehicle Frame, Autokinetics
CWASS in passenger railcars and **in other applications**

Next Generation Vehicle Project – Schuberth

Laser-welded coiled blanks
CWASS in passenger railcars and in other applications

Original springback

Springback after die compensation

NGV Project - Aperam
CWASS in passenger railcars and in other applications

Eurobus (Italy)
CWASS in passenger railcars and **in other applications**

Sandwich Panels

Pennsylvania State University (LASCOR)

University of Pisa
Challenges for producers

- High competence is required to obtain exact mechanical properties.
- CWASS: leaner, lower price grades = small profit margin.
- Higher strength = lower weight = smaller quantity and sale value.
- Limited demand for CWASS = small fabrication volume.
- Lean duplexes as an alternative to CWASS for structures.
CWASS in passenger railcars and in other applications
Challenges and opportunities

- User awareness
- Many potential CWASS users don’t know these materials exist.
- In descriptions of stainless steels, mechanical properties of austenitics are those in the annealed condition.

N.B. These austenitics are covered by ASTM A666 (CWASS Specification)

MECHANICAL PROPERTIES
The combination of a duplex structure and high nitrogen content provide significantly higher strength levels than 316L stainless steel. Often a lighter gage of stainless steel can be utilized to achieve the same strength levels of a 300 series fabrication. The resultant weight savings can dramatically reduce the material and fabrication costs of a vessel.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Ultimate Tensile Strength, ksi</th>
<th>Min</th>
<th>0.2% Yield Strength, ksi</th>
<th>Min</th>
<th>% Elong</th>
<th>Min</th>
<th>Hardness Brinell</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>255/255L</td>
<td>94</td>
<td>65</td>
<td>30</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304/304L</td>
<td>75</td>
<td>30</td>
<td>40</td>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316/316L</td>
<td>75</td>
<td>30</td>
<td>40</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CWASS in passenger railcars and in other applications
Challenges and opportunities

Marketing strategies – an example

- A large structure, typically of painted carbon steel, a lot of corrugated panels.

- The owner decided to use 1.4301 steel. Based on its nominal strength, thicknesses of 6 to 9 mm were required - too thick for corrugated parts.

- A stainless steel supplier sales team found a solution: lean duplex, stronger than 1.4301 – thickness reduction to 4 to 5 mm. Result: fabrication became possible, the weight was greatly reduced, and the total cost of material, too.

- Question: corrosion was not a problem, so why not CWASS, stronger and less expensive than duplex?
CWASS in passenger railcars and in other applications
Challenges and opportunities

Result
Some potential CWASS users select painted or zinc-plated carbon / low alloyed steel, duplex, or 12% Cr steel.

Remedy
CWASS promotion.
Example: INSAPTRANS project relative to buses and passenger rail vehicles.
CWASS in passenger railcars and in other applications

Challenges and opportunities

Design / welding standards

- EN 1993-1-4 Eurocode 3 for stainless steels: Re for austenitics only for annealed condition.

The highest Re = 350 MPa for 1.4318; Re = 230 MPa for 1.4301.

For two duplex steels: Re = 420 MPa and 480 MPa.

Values for CWASS: only if justified by complex testing.

Result: preference of users for duplex steels over CWASS, non-application of austenitics of Re in excess of the above limits even if only fillet welds are used.
CWASS in passenger railcars and in other applications
Challenges and opportunities

- **SEI/ASCE 8 Specification for the Design of Cold-Formed Stainless Steel Structural Members** applies to CWASS covered by ASTM A666.

 Groove welds: the design tensile strength = that of the annealed material. Higher values may be established by tests, simpler than EN 1993-1-4.

 Fillet welds: matching properties of filler metal are not required.

- **AWS D1.6 Structural Welding Code - Stainless Steel** retains the above rules. For procedure qualification tensile test, the results may be below tensile strength of base metal, provided the design values are met.

- **AS/NZS 1554.6 Structural steel welding. Part 6: Welding stainless steels for structural purposes**: tensile test result shall be at least equal to the strength of base metal.
Fatigue Provisions

EN 1993-1-4 refers to EN 1993-1-9 Eurocode 3 fatigue provisions. The AWS D1.6 Code contains a caveat relative to thin-walled structures: load-induced distortion may affect the actual fatigue performance as compared to the nominal values.

Directionality and asymmetry of properties

- Mechanical properties of CWASS differ as a function of direction.
- For the longitudinal direction, the Euro Inox Design Manual for Structural Stainless Steel specifies the compression/tension yield strength ratio equal to 0.8. Higher values, especially for profiles, may be established by testing.
CWASS in passenger railcars and in other applications
Challenges and opportunities

- Remedial actions and proposals

Application of actual material properties instead of standard ones (examples: Groth, Baddoo).

Application of research results on CWASS sections: the design rules for the standard-strength sections also apply to sections made of high strength (i.e., cold-worked) steels. (examples: Gardner et al., Young).

Introduction of the undermatch provisions for carbon and stainless steels into the Eurocode. Note: AWS D1.1 Structural Welding Code - Steel requires the match only for butt joints in tension:

<table>
<thead>
<tr>
<th>Table 2.3</th>
<th>Allowable Stresses (see 2.6.4 and 2.16.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Applied Stress</td>
<td>Allowable Stress</td>
</tr>
<tr>
<td>CJP Groove Welds</td>
<td></td>
</tr>
<tr>
<td>Tension normal to the effective area<sup>a</sup></td>
<td>Same as base metal</td>
</tr>
<tr>
<td>Compression normal to effective area</td>
<td>Same as base metal</td>
</tr>
</tbody>
</table>
 Butt joints strength

The actual joints strength in CWASS (Re and Rm) is less than matching but higher than permitted in standards.

Note: In structural aluminium alloys, butt joints strength is typically lower than that of base metal. This is accounted for in the design rules.

Remedy

- A research project on CWASS fusion welds properties.
- Goal: Establishment of design properties of welds in CWASS and
- Revision of standards.
Conclusion

Cold-worked austenitic stainless steels have a long history. Their original application in passenger railcars is a vivid example of human genius reflecting vision, bold management, technical and aesthetical creativity, and an open mind. This legacy of Edward G. Budd and his companions is still alive and well: thousands of shiny stainless steel cars are still being produced every year. In this way, high strength stainless steels have proven their extraordinary potential. Other applications appeared, but many potential uses are still awaiting their turn. It is up to all of us, who are passionate about stainless steels, to bring this potential to its manifestation.
CWASS in passenger railcars and in other applications

Thank you for your attention