Structural applications of ferritic stainless steels
Katherine Cashell
About the project

- 60% funded by EC RFCS
- 40% funded by stainless steel industry
- 3 year project (July 2010 – July 2013)
- 8 European partners
 - Co-ordinated by SCI
Overview: today’s discussion

- Background and objectives of the project
- Key findings to date
 - Material response
 - Member response
 - Connections
 - Corrosion
- What next?

14 December 2012
A little about ferritics…

Compared to carbon steel
 - Good corrosion-resistance

Compared to typical stainless steel
 - Low-cost
 - Price-stable (no nickel!)

As well as….
 - Durable, strong, good impact-resistance
Objective of the project

- Generate & provide technical information so ferritics can be specified in buildings
 - Structural performance
 - Fire resistance
 - Atmospheric corrosion resistance
 - Guidance on connections
- Investigate and highlight the advantages of this steel (economic, environmental…)

14 December 2012
WP1: End user requirements (Arup)

- Unknown in the construction industry
- Provide data on:
 - Corrosion and durability
 - Mechanical properties
 - Welding procedures and joining
 - Toughness
 - Grade selection
WP1: Material properties

![Stress vs Strain Graph](image)

- **Stress (N/mm²)**
- **Strain (%)**

Lines indicate:
- 1.4003
- 1.4016
- 1.4509
- 1.4521

14 December 2012
WP1: Material properties

<table>
<thead>
<tr>
<th></th>
<th>Typical cold-rolled ferritic</th>
<th>Typical austenitic</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_y (N/mm²)</td>
<td>350</td>
<td>280</td>
</tr>
<tr>
<td>f_u (N/mm²)</td>
<td>500</td>
<td>650</td>
</tr>
<tr>
<td>ε_u (A80)</td>
<td>27%</td>
<td>55%</td>
</tr>
</tbody>
</table>

![Stress vs. Strain Graph]

- **Austenitic**
- **Duplex**
- **Ferritic**
WP1: Material properties

- Relatively low f_u/f_y ratio (by SS standards)
- n value = under review
 - Look to be relatively high (like CS)
 - Annealed/cold formed
- E_s = under discussion
 - Around 200 N/mm2
WP1: Toughness properties

1. Charpy tests
 • -40 to +20°C
 • Results: OK toughness for stabilised.
 • Need to do fracture toughness tests

2. Fracture toughness tests
 • Happening early 2013
WP2: Member performance

- **Aim**: to develop efficient design methods for ferritic thin-walled members
 - *Numerical analysis*: Based on GMNIA and use ABAQUS
 - *Experimental validation*: Thin walled top-hat and hollow sections
- Design expressions developed
- Recommendations for the use of DSM
Key findings (to date):

- Existing stainless steel buckling curve can be used in all cases
 - except cold-rolled hollow sections which should use carbon steel curves
- Higher “n” factor of ferritic steels can be taken into account for open sections
WP3: Composite performance

- Ferritic stainless steel decking
 - Decking tests (construction stage)
 - Composite slab tests
 - Stud welding trials
 - Push-out tests
 - Thermal performance
 - Fire performance
WP3: Thermal Modelling

- Utilisation of inherent thermal mass in comp. slab for efficient low-carbon solution
- Detailed FE analysis used to understand, quantify and compare behaviour
Temperature distribution (night)
Thermal flux for various profiles

![Graph showing thermal flux for various profiles over time. Each profile is represented by a different line and marker style, indicating different conditions or materials.]
WP4 Fire tests: Columns
WP4 Fire tests: Columns
WP4: Column analysis

80x80x3-3000

Axial displacement (mm) vs. Furnace temperature (°C)

80x80x3-2500

Axial displacement (mm) vs. Furnace temperature (°C)

120x80x3-2500

Axial displacement (mm) vs. Furnace temperature (°C)
WP4 Fire tests: Beams
WP5: Welded joints

- Mechanical tests and metallographic examination of welds
- Design guidance
WP5: Key findings

- Cold-rolled materials have adequate toughness down to temperatures around 0°C.
- HAZ toughness is reasonable
- Susceptible to grain growth at temperatures above 950 °C - decreased toughness
- Welding heat input should be kept low
- Use austenitic welding consumables
- Stabilised ferritics are readily weldable
WP5: Design rules welded joints

- The strength rules in EN 1993-1-8 can be applied to stainless steels in conjunction with the rules in EN1993-1-3
- No experiments have been carried out on ferritic stainless steel tubular joints to date
- The level of design guidance that can be offered is limited

14 December 2012
WP6: Bolted connections
WP7: Corrosion

- Develop a comprehensive understanding of the durability of the ferritic grades
- Base material + welded + bolted
- Exposure field tests, Accelerated tests, Electrochemical tests
- Design guidance
- Comparative study of the service life of building components
In conclusion

- Very successful consortium
- Results & findings are starting to emerge
- Toughness & durability are the key issues
- What next for ferritics?
 - Watch this space…

- Questions?
SCI is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions.